کلینیک بتن ایران| تولید انواع مواد شیمیایی بتن و قطعات جانبی بتن

کلینیک بتن ایران با نوآوری و فن آوری در زمینه بتن، مواد افزودنی بتن، شیمی بتن، فرآورده های شیمیایی بتن، فرآورده های ساختمانی بتن که جزئی از سیاست های زیر بنایی تحقیقاتی خود همیشه می کوشد تا بهترین باشد.

مبلمان اداری
بهترین قیمت مبلمان اداری
www.fazagooya.com

پیام آوران پارسیان
شرکت پیام آوران پارسیان
www.papgroup.ir

خرید مبلمان اداری آفن
مبلمان و میز اداری با بهترین قیمت
www.afn-furniture.com

Mother Of Gilan,Rasht
ferdowsi hotel in tehran
www.ferdowsihotel.com/en

خرید گوسفند زنده
مرکز خرید گوسفند زنده
www.alivesheep.com

جراحی های زیبایی پرطرفدار در سال جدید
مرکز تخصصی خدمات زیبایی
www.clinicsurgery.ir

باغ عروسی
خدمات و تشریفات مجالس عروس
www.tashrifataroos.com

مهمترین و خاص ترین وظایف تشریفات عروسی
تشریفات مجالس رویای طلایی
www.royayetalaei.com

کلید سازی
کلید سازی تهران سیار و شبانه روزی
www.kelidsazitehran.com

ردیاب خودرو
خرید ردیاب خودرو
www.kavoshcom.com

کندی بار در مراسم عروسی
خدمات مجالس صبور
www.tashrifatsabour.com

نمایندگی عینک زایس
نمایندگی کارل زایس در ایران
www.maadrac.com

سقف کاذب
انواع سقف کاذب
www.azaran.com

انتخاب تم تولد
تشریفات مجالس ثمین
www.tashrifatsamin.com

کاغذ دیواری
بهترین انواع کاغذ دیواری
www.azinzand.com/fa

خدمات مجالس
تشریفات مجالس مقصودلو
www.maghsoudloocatering.com

تخلیه چاه
شرکت خدمات فنی آریا
www.evacuation.ir

ردیاب خودرو
بهترین ردیاب آنلاین خودرو
www.wizerco.com

جراحی بلفاروپلاستی
کلینیک چشم پزشکی بینایی
www.binaii.com

آتلیه کودک
آتلیه عکاسی کودک
www.bridalphotographystudio.com

اشتباهات رایج در حکاکی با لیزر
شرکت بین المللی پرسناژ
www.personageco.com

آموزش پاکسازی پوست
موسسه تالگو پاریس
www.thalgoparis.com

ضد یخ بتن
تولید کننده مواد شیمیایی ساختمان
www.clinicbeton.ir

آژانس هواپیمایی مهرپرواز
آژانس گردشگری مهرپرواز
www.mehrparvaz.com

تفاوت جراحی پلاستیک با جراحی زیبایی
کلینیک های تخصصی زیبایی
www.clinichairtransplantation.com

یاسمین سیر
آژانس مسافرتی یاسمین سیرآسیا
www.yasminseyr.com

آژانس هواپیمایی الفبای سفر
برگزار کننده بهترین تورهای ترکیه
www.alefbatour.com

کلاس تیزهوشان راه اندیشه
آموزشگاه کنکور راه اندیشه
www.raheandisheh.ir

قفسه بندی
ساخت و اجرای سیستم قفسه بندی
www.fazasazanamin.com

بلیط هواپیما
خرید مستقیم بلیط هواپیما
www.jibojet.com

سالن زیبایی مهسا ممتاز
سالن آرایش مهسا ممتاز
www.mahsamomtaz.com

تالار عروسی عرشیا
مجتمع گردشگری عرشیا
www.talararous.com

آژانس هواپیمایی آسمان آبی
آژانس گردشگری آسمان آبی
www.asemanabi.net

آژانس هواپیمایی اوج ماندگار
آژانس گردشگری اوج ماندگار
www.oujmandegar.com
طراحی سایت و سئو :پیام آوران پارسیان
وبلاگ مبلمان اداری فضاگویا
بهترین قیمت مبلمان اداری
fazagooya.blogspot.com

وبلاگ مبلمان اداری آفن
مبلمان اداری لوکس آفن
afn-furniture.blogspot.com

وبلاگ خدمات مجالس صبور
خدمات مجالس صبور
tashrifatsabour.blogspot.com

وبلاگ مبلمان اداری آذران
انواع مختلف پارتیشن های با کیفیت
azaran-fazanam.blogspot.com

وبلاگ تشریفات ثمین
تشریفات مجالس ثمین
tashrifatsamin.blogspot.com

وبلاگ کاغذ دیواری آذین زند
کاغذ دیواری کلاسیک با بیشترین تنوع
azinzand.blogspot.com

وبلاگ تشریفات عروسی مقصودلد
لوکس ترین باغ عروسی
maghsoudloocatering.blogspot.com

وبلاگ ردیاب وایزر
بهترین ردیاب آنلاین خودرو
wizerco.blogspot.com

وبلاگ کلینیک بینایی
کلینیک چشم پزشکی بینایی
binaii.blogspot.com

وبلاگ مجموعه برش لیزری پرسناژ
شرکت بین المللی پرسناژ
personageco.blogspot.com

وبلاگ آژانس مسافرتی آرزوی آسمان آبی
آژانس مسافرتی آسمان آبی
asemaneabitravel.blogspot.com

وبلاگ کلینیک بتن ایران
تولید کننده مواد شیمیایی ساختمان
clinicbeton.blogspot.com

وبلاگ آژانس مسافرتی مهرپرواز سیوان
آژانس هواپیمایی مهرپرواز
mehrparvaz.blogspot.com

وبلاگ تشریفات ملل
تشریفات و خدمات مجالس ملل
melalceremony1.blogspot.com

وبلاگ آژانس هواپیمایی الفبای سفر پارسیان
برگزار کننده بهترین تورهای خارجی
alefbatour.blogspot.com

وبلاگ مجموعه فضاسازان امین
طراحی و اجرای سیستم های قفسه بندی
fazasazanamin.blogspot.com

وبلاگ خرید اینترنتی بلیط هواپیما
خرید مستقیم بلیط هواپیما
jibojet.blogspot.com

طراحی وب سایت و سئو سایت :پیام آوران پارسیان

وبلاگ مبلمان اداری فضاگویا
بهترین قیمت مبلمان اداری
fazagooya.wordpress.com

وبلاگ مبلمان اداری آفن
مبلمان اداری لوکس آفن
afnfurniture.wordpress.com

وبلاگ خدمات مجالس صبور
خدمات مجالس صبور
tashrifatsabour.wordpress.com

وبلاگ مبلمان اداری آذران
انواع مختلف پارتیشن های با کیفیت
azaranblog.wordpress.com

وبلاگ تشریفات ثمین
تشریفات مجالس ثمین
tashrifatsamin.wordpress.com

وبلاگ کاغذ دیواری آذین زند
کاغذ دیواری کلاسیک با بیشترین تنوع
azinzand.wordpress.com

وبلاگ تشریفات عروسی مقصودلد
لوکس ترین باغ عروسی
maghsoudloocatering.wordpress.com

وبلاگ ردیاب وایزر
بهترین ردیاب آنلاین خودرو
wizerco.wordpress.com

وبلاگ کلینیک بینایی
کلینیک چشم پزشکی بینایی
binaii.wordpress.com

وبلاگ مجموعه برش لیزری پرسناژ
شرکت بین المللی پرسناژ
personageco.wordpress.com

وبلاگ آژانس مسافرتی آرزوی آسمان آبی
آژانس مسافرتی آسمان آبی
asemaneabitravel.wordpress.com

وبلاگ کلینیک بتن ایران
تولید کننده مواد شیمیایی ساختمان
clinicbeton.wordpress.com

وبلاگ آژانس مسافرتی مهرپرواز سیوان
آژانس هواپیمایی مهرپرواز
mehrparvaz.wordpress.com

وبلاگ تشریفات ملل
تشریفات و خدمات مجالس ملل
melalceremony.wordpress.com

وبلاگ آژانس هواپیمایی الفبای سفر پارسیان
برگزار کننده بهترین تورهای خارجی
alefbasafar.wordpress.com

وبلاگ مجموعه فضاسازان امین
طراحی و اجرای سیستم های قفسه بندی
fazasazanamin.wordpress.com

وبلاگ خرید اینترنتی بلیط هواپیما
خرید مستقیم بلیط هواپیما
jibojet.wordpress.com

طراحی وب سایت و سئو سایت :پیام آوران پارسیان

۲ مطلب با کلمه‌ی کلیدی «بتن ریزی» ثبت شده است

  • ۰
  • ۰

زمانی که مجموعه ای از اهداف عملکرد و نسبت های مخلوط بر روی کاغذ آورده می شود، مرحله بعدی شناسایی مخلوط جهت تامین عملکرد موفق در طول فرآیند تولید است. دستورالعمل های موقتی مطرح شده از سوی انستیتو بتن پیش تنیده / پیش ساخته سه مرحله در فرآیند شناسایی مخلوط را معرفی می کند. نخست بچینگ های (Batch) کوچک کنترل شده در آزمایشگاه مورد آزمون قرار می گیرند، دوم مخلوط انتخاب شده در تولید، آزمایش می شود که شامل کاربرد بچینگ، مخلوط و تجهیزات بتن ریزی می شود و در نهایت یک طرح کنترل تضمین کیفیت برای ویزگی های سخت شدگی و تازه، ایجاد می شود.

شناسایی آزمایشگاهی

همیشه تعداد معینی از آزمایش ها به دنبال توسعه یک ترکیب جدید هستند، در فرآیند شناسایی، ویژگی های سخت شدگی و تازه مهم، آزمایش می شوند. جهت تضمین بالاترین سطح کنترل، توصیه می شود در صورت امکان بچینگ های آزمایشگاهی کوچک در ابتدا مورد استفاده قرار گیرد. در این روش تاثیرات تنظیمات کنترل شده و خاص آموخته می شوند. زمان اجرای آزمایش های لابراتوری بتن، رویه های خوب و تمام استانداردهای مناسب، مانند آنچه که در ASTM وجود دارد، باید مدنظر قرار گیرند.

فاز یک فرآیند شناسایی مخلوط

تصویر 1 فاز یک فرآیند شناسایی مخلوط

تصویر 1 به نمایش فلوچارت (نمودار جریان) برای بخش اول فرآیند شناسایی می پردازد. مخلوط ایجاد شده برای ویژگی های تازه هدف آزمایش می شود. اگر این ویژگی ها به دست نیایند، تنظیماتی در نسبت های مخلوط بتن اعمال می شوند. اگر اهداف تازه به دست آیند، سپس آزمون مقاومت مخلوط و ویژگی های سخت شدگی انجام می شود. این روند ادامه می یابد تا این که به ویزگی های سخت شدگی و تازه مناسب دست یابیم.

آزمون نسبت های اولیه

برنامه آزمون آزمایشگاهی اولیه به موقعیت وابسته بوده و می تواند به صورت محدود و گسترده باشد. در اکثر موارد، متخصصین بتن تنها به قصد تولید مخلوط که مورد استفاده قرار می گیرد به این مرحله نزدیک می شوند که گاهی منتهی به یک باریک بینی و نگرش محدود به این فرآیند می شود و در نهایت منجر به آزمایش تنها یک مخلوط خواهد شد، تنظیمات صورت می گیرد و مخلوط مجدداً آزمایش می شود. این متدولوژی اشتباه نیست اما نه کارآمد بوده و نه منجر به شناخت و یادگیری تنظیمات چندگانه و فعل و انفعالات آنها می شود. طرح آزمایشی کارآمد به خودی خود یک نظم و انضباط خاص داشته و کتاب های متعددی می توانند به بیان این موضوع بپردازند. آزمایشات طراحی شده آماری می تواند به صورت همزمان یک مخلوط بتن SCC خاص را ارائه نموده و فعل و انفعالات بین متغیرهای نسبت بندی مخلوط را شفاف کند. خلق یک مخلوط و شناخت فعل و انفعالات برای دوره بلند مدت و کوتاه مدت اهمیت دارد. نتایج موجود در زمان صرف شده برای رفع عیب در مراحل بعدی مطرح می شود. اگر متخصص دارای مهارت طراحی آزمایشی نباشد، بسته های نرم افزاری بازاری موجود یا خدمات موجود از طریق عرضه کنندگان اطلاعات می توانند به توسعه یا طراحی یک آزمایش SCC (در صورت مطلوب بودن) کمک کنند.

آزمون آزمایشگاهی، تفسیر نتایج و تنظیم نسبت های اختلاط

آزمون و ارائه داده ها اغلب بخش آسان فعالیت ما را شکل می دهد. بخش اصلی این فرآیند تفسیر داده ها و ایجاد تنظیمات می باشد. زمانی که تنظیم نسبت های مخلوط SCC مطرح می شود، یک ارزیابی کیفی از مخلوط، اغلب به اندازه هر ارزیابی آزمون دیگری اهمیت دارد. این به خصوص در مورد ناپایداری و تفکیک مصداق دارد. زیر مجموعه های ذیل دستورالعمل مهمی را برای تنظیم نسبت ها ارائه داده تا قابلیت پر کردن و سیالیت، توانایی عبور، پایداری و مقاومت براساس آزمون آزمایشگاهی را بهبود بخشند. لازم به ذکر است که در بعضی موارد تنظیمات نسبت بندی ممکن است بر بیش از یک ویزگی تاثیر بگذارند.

سیالیت / قابلیت پر کردن

در کل این ویژگی از طریق آزمون جریان اسلامپ اندازه گیری می شود.

  • اگر جریان اسلامپ بسیار بالا باشد باید مقدار آب را کاهش دهید، اگر مقدار آب کاهش یابد، پس حجم خمیر و نسبت آب به پودر از لحاظ حجمی (wv/pv) کاهش می یابد که هر دوی آنها ویسکوزیته ترکیب را افزایش می دهد و این نیز نیازمند افزایش میزان سنگدانه ها برای جبران حجم آب از دست رفته است. کاهش در حجم خمیر می تواند تاثیر منفی بر قابلیت عبور داشته باشد.
  • مقدار کاهش دهنده میزان آب با طیف بالا (HRWR) را کاهش دهید. این از مزیت کاهش سیالیت برخوردار است، زیرا به یک تنظیم تعادل ساز حجم در نسبت های مخلوط نیاز ندارد.
  • برای کمک به تصمیم گیری در مورد انتخاب نوع مرحله، باید توجه داشت که آیا این ترکیب علایم تجزیه و ناپایداری را نشان می دهد یا خیر. اگر ترکیب علایم ناپایداری در این جریان، اسلامپ بالا را نشان ندهد، نشانه خوبی بوده و مقدار HRWR باید کاهش یابد. مجموعه زیر در مورد تنظیم و اصلاح پایداری و مقاومت در برابر تفکیک به بحث و بررسی این نکته می پردازد که چگونه می توان سطح جریان اسلامپ را بررسی نمود، چنانچه مخلوط علایم ناپایداری را نشان می دهد.
  • اگر جریان اسلامپ بسیار پایین باشد باید میزان آب را افزایش دهید تا جایی که نسبت آب به سیمان فراتر از محدوده مشخص افزایش نیابد. افزایش میزان آب باعث افزایش حجم خمیر و نسبت (wv/pv) می شود. بدینوسیله هم ویسکوزیته مخلوط و هم سیالیت افزایش می یابد. این نوع تنظیم باید در مراحل کوچک اعمال گردد طوری که موجب ناپایداری مخلوط نشود.

افزایش مقدار HRWR: در صورتی که جریان اسلامپ به صورت نظام مند با افزایش مقدار HRWR و بدون تفکیک افزایش یابد، نسبت های مخلوط به صورت منطقی متعادل می شود. اگر در طول فرآیند، جریان اسلامپ افزایش نیابد، می تواند ناشی از یک یا چند مورد زیر باشد:

  • ترکیب دارای یک حجم خمیر ناکافی می باشد.
  • سیمان به کار رفته به سرعت سفت می شود.
  • نسبت آب به سیمان آنقدر پایین است که مقدار اشباع پراکنده، افزایش یافته است. بنابراین اگر این مورد اتفاق بیافتد، تنظیم نسبت مخلوط ممکن است ضروری باشد.

افزایش کل حجم خمیر: اگر حجم خمیر بسیار پایین باشد و HRWR را اضافه نماییم، می تواند به صورت نظام مند باعث تفکیک شود که از طریق آب دهی و بی رنگ شدن سطح بتن قابل تشخیص است. زمانی که حجم خمیر ناکافی باشد، از طریق وجود غلظت در سنگدانه ها در مرکز لایه ای جریان اسلامپ (در انجام آزمون جریان اسلامپ) مشخص می شود.

مخلوط بتن

توانایی عبور

 

ASTM C 1621 به ارزیابی توانایی عبور SCC از طریق تعیین تفاوت بی جریان اسلامپ با حلقه و یا بدون حلقه J می پردازد. بعضی از استانداردهای اروپایی تفاوت ارتفاع لایه ای درون حلقه در برابر بیرون حلقه را اندازه گیری می کنند.

این تفاوت یا اختلاف ارتفاع ارزیابی می کند که آیا اتصال معنادار سنگدانه ای وجود دارد یا خیر و آیا در داخل حلقه ساخته می شود؟ با استفاده از متدولوژی پیشنهادی از سوی ASTM C 1621، اگر توانایی عبور کافی نباشد با توجه به این که جریان اسلامپ بدون حلقه 50 میلی متر یا بیشتر (2 اینچ) است، بیشتر از جریان اسلامپ حلقه J، باید مجدداً ارزیابی در خصوص چگونگی انسداد سنگدانه ها صورت گیرد.

 

پایداری و مقاومت در برابر تجزیه

موارد ذیل مربوط به مراحل تنظیم پایداری براساس آزمون آب دهی و آزمون تفکیک ستون ارائه شده است:

  • بررسی انباشته شدن آب تراوش شده به میزان بسیار بالا

    افزودن یا افزایش مقدار VMA

    کاهش نسبت wv/pv از طریق کاهش آب یا افزایش پودر

    در صورتی که حجم خمیر نسبتاً پایین باشد، باید میزان خمیر را افزایش داد. به خاطر داشته باشید که بطور کلی، حجم خمیر در ابتدای دستیابی به ویژگی های تازه مخلوط SCC متغیر است.

    افزایش میزان سنگدانه های ریز بطوری که میزان اضافه سنگدانه های ریز محسوس باشد (mµ 300 ˂) 

  • اگر آب دهی اضافی به صورت شیمیایی از طریق مقدار HRWR صورت گیرد، لازم است میزان HRWR را پایین آورده و حجم خمیر را افزایش دهید. 
  • نشست بیش از حد سنگدانه های درشت

    در صورت امکان براساس الزامات کاربردی، جریان اسلامپ را با کاهش مقدار HRWR کم کنید.

    ویسکوزیته مخلوط را با کاهش wv/pv یا افزایش مقدار VMA، افزایش دهید.

    چنانچه همراه با آب دهی شیمیایی باشد، پس حجم خمیر را افزایش دهید.

    در صورت امکان، ماکزیمم اندازه سنگدانه ها را کاهش دهید، توجه داشته باشید که اگر این تنظیم صورت گیرد، ممکن است افزایش در حجم خمیر الزامی باشد.

آزمون قدرتمندی

 

زمانی که یک مخلوط یا مجموعه ای از مخلوط ها حاوی ویژگی های سخت شدگی و تازه مناسب، ساخته شده باشند، باید قدرتمندی این مخلوط ها مشخص شود. قدرتمندی مخلوط SCC به معنی عدم حساسیت این مخلوط در مقابل نوسان سیالیت، بچینگ درست و یا ویژگی های مواد خام از قبیل میزان رطوبت و توزیع اندازه ذرات می باشد که می تواند منجر به تغییراتی در ویژگی تازگی ترکیب SCC گردد. یک ترکیب قوی ترکیبی است که می تواند به راحتی تولید شود و پیوسته به ویژگی مورد نظر (به لحاظ تازگی) بدون حضور مستمر تولید کننده یا پیمانکار در محل پروژه دست یابد.

بدین ترتیب مشخص شد که با هر افزایش سطح جریان اسلامپ، ترکیبات به تغییرات حساس بوده و مقاومت بتن کاهش می یابد. هدف در آزمون قدرتمندی، یافتن نقطه ای است که در آن یک مخلوط برای مدت طولانی عملکرد قابل قبول را برحسب پایداری و سیالیت و توانایی عبور به نمایش نمی گذارد. بنابراین باید این مرحله را با هدف خرد کردن ترکیب شروع کرد، طوری که بدانیم تا چه حد می تواند در مقابل فشار پایداری خود را حفظ کند.

اولین مرحله در آزمون قدرتمندی، تعیین رابطه بین سیالیت و پایداری برای مصالح و ویژگی های انتخاب شده است. هدف این آزمون، اشاره به سطح ناپایداری مخلوط است. طرح زیر به ارائه مراحل پیشنهادی برای ارزیابی این رابطه می پردازد. جریان اسلامپ می تواند بنابر صلاحدید متخصص تنظیم شود. به خاطر این که رابطه بین جریان اسلامپ و سایر داده های آزمون همیشه خطی نیست، مینیمم سه سطح جریان اسلامپ توصیه می شود. هر مخلوط ترسیم شده از نسبت های برابر (هنگام تنظیم مقدار HRWR) استفاده می کند.

 

ترکیبات:

  1. تنظیم مقدار HRWR برای دستیابی به جریان اسلامپ 500 تا 550 میلی متر
  2. تنظیم مقدار HRWR برای دستیابی به جریان اسلامپ 600 تا 650 میلی متر 
  3. تنظیم مقدار HRWR برای دستیابی به جریان اسلامپ 700 تا 750 میلی متر

آزمون ها:

 

جریان اسلامپ                            زمان T50

تفکیک ستون                             آب دهی

شاخص پایداری چشمی (VSI)        میزان آب

 

 

توانایی عبور از حلقه J، این آزمون صرفاً زمانی ضروری است که توانایی عبور یک ویژگی ضروری باشد.

زمان تکمیل این آزمون، تعدادی از طرح های اسکاتر (در نمایش رابطه بین جریان اسلامپ، T50 و سایر داده های آزمون) می توانند جهت استفاده ترسیم شوند. مانند آنچه که در تصویر  2نشان داده شده است، هر نقطه از داده ها می تواند با نتیجه آزمون (که شامل هر آزمون دیگری مانند درصد تفکیک ستون، VSI، جریان حلقه J با سایر موارد می باشد) علامت گذاری شود. این تصور به ترسیم داده های فرضی برای زمان T50 در برابر جریان اسلامپ و درصد تفکیک ستون برای مجموعه ترکیبات فوق می پردازد.

 

طرح داده ای برای آزمون قدرتمندی

تصویر 2 طرح داده ای برای آزمون قدرتمندی

 

در این مثال متخصص می تواند رابطه T50 جریان اسلامپ و محدوده های کنترل کیفیت را براساس محدوده تفکیک مشخص شده معرفی کند، اگر محدوده تفکیک 10 یا 15 درصد باشد، پارامترهای متفاوت برای دو آزمون دیگر در نظر گرفته می شود.

جنبه دیگر قدرتمندی، واکنش یک مخلوط به خطاهای بچینگ است. این بخش از طریق ایجاد تغییرات هدفمند در اوزان پیمانه یک ترکیب مشخص و نیز اندازه گیری واکنش، ارزیابی می شود. ASTM C 94 شاخص استاندارد بتن آماده است که می تواند برای اعمال تغییرات مناسب در وزن بچینگ ها استفاده شود. این استاندارد دستورالعمل مربوط به دقت بچینگ مصالح برای کارخانجات و تولید بتن آماده را ارائه می دهد. برای مثال، بخش 9 از ASTM C 94 اصول زیر در خصوص بچینگ دقیق با اندازه نرمال هر پیمانه را ارائه می کند: پودرها (ترکیبات سیمان و مواد معدنی) ±1% مصالح ±2% و کل آب ±3% بالا و پایین کردن پودر و یا محتویات آب می تواند تاثیر قابل توجهی را بر سیالیت و پایداری مخلوط داشته باشد. با هدف یافتن نقطه شکست یک مخلوط توصیه شده که قدرتمندی در نقاطی بیرون از این محدوده دقت ارزیابی شود. حداقل توصیه مولف، کاهش بیشتر در نقطه مینیمم پودر (%2- بیشتر از %1) همچنین افزایش ماکزیمم نقاط آب (%6+ بیشتر از %3+) می باشد. نتایج آزمون براساس این محدوده های افزایش یافته، کاملاً فضای عملکرد قدرتمندی را مشخص کرده و شناخت بیشتر محدوده های ترکیب، مدنظر قرار می گیرد. جدول1 به ارائه گروهی از نسبت ها و مینیمم و ماکزیمم محدوده های هر ماده (مصالح) می پردازد.

کنترل رطوبت آزاد سنگدانه ها اغلب به عنوان یکی از حوزه های اساسی و مهم برای کنترل در طی تولید SCC مطرح بوده است. آب پیش بینی نشده می تواند در سطح قابل توجهی برای تمامی این ویژگی های SCC تازه تاثیر بگذارد.

 

حداکثر

(kg)

حداقل

(kg)

حداکثر

حداقل

مثال تناسب

(kg/m3)

 

455

441

+1%

-2%

450

ترکیب آب معدن و سیمان

867

833

+%2

-2%

850

سنگدانه درشت

816

784

+%2

-2%

800

سنگدانه ریز

196

179

+%6

-3%

185

آب

جدول 1 مینیمم مصالح نمونه و ماکزیمم محدوده آزمون قدرتمندی

 

بنابراین برخورداری از درک روشن در رابطه با قدرتمندی آب مخلوط برای تولید کننده بتن اهمیت فراوانی دارد. جدول 2 به نمایش طرح آزمون قدرتمندی نمونه جهت ارزیابی کاهش پودر و کاهش و افزایش آب می پردازد. میزان تنظیم در بخش های سایه دار ارائه می شوند. در این برنامه تمام آزمون های ویژگی تازه و استاندارد اجرا شده و قدرتمندی مخلوط اندازه گیری می شود. کل مقادیر افزودنی ها براساس ترکیب مرجع (به جز HRWR) ثابت هستند که برای دستیابی به جریان اسلامپ هدف تنظیم می شوند. یک مخلوط در صورتی قدرتمند است که تغییرات وزن بچینگ منجر به تغییرات کوچک اما قابل قبول در عملکرد (اندازه گیری شده از طریق روش های آزمون انتخاب شده) شود.

با این وجود، متدولوزی فوق صرفاً تاثیر یک فاکتور را در یک زمان نشان می دهد. باید پذیرفت که تولید بتن واقعی دینامیک تر از این تولید است. در طول تولید یک بچینگ واحد بتن، این امکان وجود دارد که میزان توزین شده بیش از یک ماده می تواند باعث نوسان بالاتر یا پایین تری از نسبت های هدف شود، درحالی که هنوز درون بازه های بچینگ مشخص شده قرار دارد. این امکان وجود دارد که به ارزیابی و مدل سازی این حالت پیچیده تر بپردازیم.

 

water

robustness

(%6+)

water

robustness

(%3+)

water

robustness

(%3-)

پودر خوب

عملکرد

(%2-)

پودر خوب

عملکرد

(%1-)

مثال تناسب

 

450

450

450

441

446

450

مقاومت بالا

850

850

850

850

850

850

پرداخت سطح

800

800

800

800

800

800

ساختار پیچیده

196

191

179

185

185

185

دسترسی محدود

جدول 2 برنامه آزمون نمونه برای ارزیابی قدرتمندی براساس دقت بچینگ

 

چنانچه این روند انجام شود، باید یک طرح آزمایشی بهتر و مجموعه ای از ابزارهای تجزیه و تحلیل را به کار برد. در مطالعات قبلی، این نوع تجزیه و تحلیل قدرتمندی جایی اجرا شد که مصالح چندگانه به صورت همزمان با هم تفاوت هایی داشته اند. با نسبت مصالح و ترکیبات مورد استفاده، نوسانات موجود در وزن های ماسه و سنگدانه های درشت، تاثیر کمی بر عملکرد SCC داشته اند. بیشترین تاثیر، زمانی رخ داد که وزن آب و کل وزن پودر تفاوت داشتند. بنابراین لازم است اینها به دقت و از نزدیک نظارت شوند. بعلاوه اگر این فاکتورها به صورت همزمان تغییر کنند، نوسانات عملکرد متفاوت می شوند.

برای مثال اگر مقدار آب کمتر از میزان هدف بچینگ باشد و کل پودر بیشتر، ویسکوزیته مخلوط می تواند به صورت چشمگیری افزایش یابد. از سوی دیگر اگر آب بیشتر از میزان هدف و کل پودر، کمتر از آن باشد، یک ظرفیت بالا برای ناپایداری مخلوط و تفکیک ایجاد می شود. همچنین دامنه تغییرات وزن بچینگ ها نیز بستگی به این دارد که اهداف نسبت مخلوط اولیه کجا تعیین می شوند. اگر محتوی آب مورد نظر بسیار پایین باشد پس در اولین حالت فوق الذکر تغییر ویسکوزیته ممکن است بسیار زیاد باشد.

قدرتمندی کلی اساساً با سیالیت، تفکیک و معیار آب دهی مرتبط است. با این وجود در بعضی از شرایط، ارزیابی قدرتمندی توانایی عبور از طریق افزایش وزن بچینگ سنگدانه های درشت تا حد ماکزیمم (نشان داده شده در جدول 1) مناسب و به جا است، اما در حد مینیمم، محدوده پودر و آب باید آزمایش شود. آزمون محدوده های سنگدانه ها مفید است اما این کار به صلاحدید متخصص موکول شده است. اگر احراز شود که قدرتمندی یک ترکیب ناکافی است، می توان موارد زیر را انجام داد:

 

  • در صورت امکان؛ کاهش سطح هدف جریان اسلامپ
  • افزایش حجم خمیر
  • افزایش مقدار VMA. گزارش های متعدد نشان داده که افزودن VMA به ترکیب SCC باعث تقویت قدرتمندی مخلوط می شود،.
  • کاهش ماکزیمم اندازه سنگدانه ها
  • افزایش تراکم خمیر

زمانی که یک ترکیب مناسب ایجاد می شود، مرحله بعدی تولید ترکیب از طریق کارخانه تولید بتن است و در صورت امکان استفاده از روش ها و اشکال پیشنهادی برای پروژه صورت می گیرد.

نحوه شناخت مخلوط بتن

آزمایش و ارزیابی تولید

 

زمانی که یک ترکیب SCC برای رسیدن به ویژگی های مورد نظر (سخت شدگی و تازه) ارائه می شود. آزمایش بتن ریزی با آزمایش مدل توصیه می شود. اگر چه این آزمون ها دیگر در آزمایشگاه ها انجام 

نمی شود، این مرحله هنوز بخشی از فرآیند توسعه بتن است. و با حوزه گسترده تری از آزمون به ارزیابی مخلوط از تولید تا تحویل و بتن ریزی می پردازد.

در حال حاضر تمرکز بر روی ویژگی های ترکیب SCC است، اما باید مفاهیم زیر مورد بررسی قرار گیرند:

 

  • بچینگ و ترکیب در یک مقیاس تولید

    بچینگ و ذخیره سازی مصالح خام

    کنترل رطوبت

    ترکیب بتن

    - نوع و اندازه میکسر

    - ترتیب بچینگ مواد

    - زمان ترکیب

  • تحویل

    تجهیزات تحویل

    زمان تحویل

  • بتن ریزی

    تجهیزات

    تکنیک ها

    مسیر بتن ریزی

    میزان بتن ریزی

    زمان

    زمان پرداخت (در صورتی که قابل اجرا باشد)

  • پرسنل

    آموزش

    بچینگ و ترکیب

    بتن ریزی

 

علاوه بر آزمون توانایی فرد برای تولید، تحویل و یا بتن ریزی، مزایای واقعی SCC در برابر بتن معمولی را می توان در این زمان ارزیابی کرد. زمان مورد نیاز برای بچینگ، ترکیب، بتن ریزی و پرداخت تماماً می تواند اندازه گیری شود. زمانی که الزامات منابع انسانی برای بتن ریزی و پرداخت محسوس می باشد، سایر مزایا از قبیل زیبایی شناسی مطلوب که منجر به کاهش وصله کاری و مصالح می شود می تواند تعیین گردد. بنابر توصیه مولف، تولید کننده یا پیمانکار، آنالیز مزایا را در طول مرحله مدل آزمایشی (آزمایش ماکت برابر) اجرا کند و سپس به بررسی مجدد آن در طی تولید واقعی بپردازد تا تعیین کند که آیا بازدهی وجود داشته و میزان آن چقدر بوده است.

باید تفکر دقیق و توجهات بیشتری در مورد فرآیند مدل آزمایشی اعمال گردد. پیش از آزمایش، جلسه ای با مسئولان کنترل کیفیت، تولید و بتن ریزی سازماندهی شود. هر عملکرد باید از وظایف ارزیابی خاص جهت اجرا برخوردار باشد و وردی حاصل از تمام طرفین بررسی گردد. فرآیند عملیات از آزمون آزمایشگاهی تا محیط تولید باید طی شود و مسئولان بتن ریزی وحدت نظر ایجاد کنند. اگر یک کارگر بتن ریزی اطلاعات کافی در این زمینه نداشته باشد و آموزش حداقلی در بتن ریزی با SCC را کسب نکرده باشند، چگونه می توان تعیین کرد که آیا یک پرداخت سطح غیرقابل قبول ناشی از ترکیب ضعیف، تکنیک بتن ریزی ضعیف یا هر دو بوده است؟ متخصص باید در موقعیتی قرار داشته باشد که به وضوح متغیرها را برای پاسخ به این سوال تفکیک کند.

شناسایی یک ترکیب SCC شامل تست آزمایشگاهی ویزگی های سخت شدگی و ، آزمون قدرتمندی و آزمایش های مدل آزمایش تولید یا آزمایش بتن ریزی می گردد. این فرآیند ارتباطی میان تئوری و عمل بوده و یک متخصص می تواند مطالب بیشتری در رابطه با ترکیبات SCC و کاربرد آن بیاموزد. ساماندهی زمان سرمایه گذاری منابع تا جایی افزایش می یابد که متخصص به ساخت مدل های آزمایشی و تست بتن ریزی می پردازد زیرا در حال حاضر حجم بتن و تعداد افراد دخیل رو به افزایش است. همان طور که در اکثر فعالیت ها می بینیم، موفقیت فرآیند شناسایی به سرمایه گذاری های زمانی و آماده سازی قبل از اجرا بستگی دارد.

 

جهت اطلاعات بیشتر در زمینه تولید و فروش بتن و محصولات مرتبط و همچنین اطلاع از قیمت روز بتن می توانید با شرکت مهندسین مشاور مهرازان پایدار با نام نشان تجاری ثبت شده کلینیک بتن ایران با شماره 02145872 واحد مهندسی تماس حاصل نموده و یا جهت اطلاعات بیشتر در این زمینه به وب سایت رسمی شرکت WWW.CLINICBETON.IR مراجعه فرمایید.

  • مسعود اسماعیلی
  • ۰
  • ۰

موضوع بتن ریزی در دماهای متفاوت

در بتن ریزی در آب و هوای گرم مسائل خاصی وجود دارند. این مسائل ناشی از دمای بالاتر بتن و در بیشتر موارد، ناشی از نرخ بالاتر تبخیر آب از سطح مخلوط تازه هستند. این مشکلات در بتن ریزی حجیم یا با جرم زیاد با ترک خوردگی های احتمالی ناشی از افزایش دما و افت بعدی ناشی از حرارت هیدراسیون سیمان و تغییر حجم های ناشی از مهارشدگی همراه خواهند بود. از طرف دیگر، در زمان بتن ریزی در هوای سرد نیز احتیاط هایی برای اجتناب از تاثیرات مخرب خرابی یخ بندان در بتن تازه یا در سنین اولیه ضروری است. در این شرایط باید گام های مناسبی در اختلاط، ریختن و عمل آوری بتن برداشته شود.

1- مسائل بتن در آب و هوای گرم

دمای بالاتر بتن تازه نسبت به حالت معمول منجر به هیدراسیون سریعتر سیمان و همچنین تسریع گیرش و مقاومت کوتاه مدت کمتر بتن سخت شده می شود (شکل 1). دلیل این امر، تشکیل ساختار غیریکنواخت ژل می باشد. علاوه بر این، در صورتی که دمای بالا همراه با رطوبت نسبی پایین هوا باشد، مقداری از آب اختلاط سریعاً تبخیر شده و موجب افت بیشتر کارایی، جمع شدگی پلاستیک بیشتر و ترک های سطحی می شود. همچنین دمای بالای بتن تازه در بتن ریزی های حجیم تعیین کننده می باشد، زیرا افزایش سریع دمای هیدراسیون سیمان می تواند سبب گسترش اختلاف های دمایی بیشتری بین بخش های مختلف بتن شود. همچنین سرد شدن متعاقب بتن سبب ایجاد تنش های کششی می شود که ممکن است، موجب ترک خوردگی بتنشوند.

یک مشکل دیگر، ایجاد حباب هوا در بتن است که در دماهای بالا سخت تر ایجاد می شوند، البته این مشکل را می توان به راحتی با مصرف بیشتر ماده افزودنی حباب هوازا حل کرد. مسئله دیگر این است که در صورتی که بتن نسبتاً سرد در اثر دمای بالاتر محیط منبسط شود، آنگاه فضاهای خالی بتن منبسط شده و مقاومت بتن کاهش می یابد. به طور مثال این مورد در قطعات افقی موجود در قالب های فولادی که امکان انبساط در آنها وجود ندارد، اتفاق می افتد. این مسئله در قطعات قائم وجود ندارد.

عمل آوری در دماهای بالا و در هوای خشک، مشکلات بیشتری را به بار می آورد، زیرا آب عمل آوری سریعاً تبخیر شده و در نتیجه هیدراسیون با سرعت کمتری انجام می شود. یکی از نتایج این عمل، افزایش ناکافی مقاومت و وقوع سریع جمع شدگی ناشی از خشک شدن است. مورد دوم احتمالاً سبب ایجاد تنش های کششی بزرگی می شود که برای ترک خوردگی بتن سخت شده کافی خواهند بود. چنین نتیجه می شود که جلوگیری از تبخیر از سطح بتن حیاتی است.

نمودار تاثیر دما در مقاومت بتن

شکل 1 تاثیر دما طی 28 روز اول برمقاومت بتن (نسبت آب به سیمان برابر با 41/0، مقدار حباب هوا برابر با 5/4 درصد و سیمان مصرفی سیمان پرتلند معمولی (نوع I) می باشد.)

 

2- بتن ریزی در آب و هوای گرم

در اولین قدم، دمای بتن در کارگاه یا در لحظه تحویل باید پایین نگه داشته شود. ترجیحاً دمای بتن نباید بیشتر از 16 درجه سلسیوس (60 درجه فارنهایت) و حداکثر باید 32 درجه سلسیوس (90 درجه فارنهایت) باشد.دمای واقعی بتن تا حدی بیشتر از دمای به دست آمده از عبارت بالاست که دلیل آن کار مکانیکی انجام شده در هنگام اختلاط و افزایش اولیه حرارت هیدراسیون سیمان می باشد. معمولاً، عبارت فوق، به استثنای این مورد، به اندازه کافی دقیق است.از آنجا که اغلب کنترل های معینی بر دمای برخی از اجزای تشکیل دهنده بتن وجود دارد، بررسی تاثیر نسبی تغییر دمای آنها مفید است.

به عنوان مثال، در یک نسبت آب به سیمان 5/0 و نسبت مصالح سنگی به سیمان 6/5، می توان با کاهش دمای سیمان تا 9 درجه سلسیوس (9 درجه فارنهایت)، یا دمای آب تا 6/3 درجه سلسیوس (6/3 درجه فارنهایت) یا دمای مصالح سنگی تا 6/1 درجه سلسیوس (6/1 درجه فارنهایت)، دمای بتن تازه را تا 1 درجه سلسیوس (یا 1 درجه فارنهایت) کاهش داد. بنابراین، می توان مشاهده کرد که به دلیل مقدار کمتر سیمان در مخلوط، دمای سیمان نسبت به سایر اجزای تشکیل دهنده بتن به اندازه بیشتری کاهش پیدا کند. علاوه بر این خنک کردن آب به مراتب راحت تر از خنک کردن سیمان و مصالح سنگی است.

علاوه بر این، این امکان وجود دارد که از یخ به عنوان بخشی از آب اختلاط استفاده کنیم. حتی این کار موثرتر است، زیرا برای تامین گرمای یخ حرارت بیشتری را از سایر اجزای تشکیل دهنده بتن جذب می کند. هنگام استفاده از یخ به دقت ویژه ای نیاز می باشد، زیرا الزامی است که تمام یخ پیش از تکمیل اختلاط به طور کامل ذوب شود.

 

اگر چه تاثیر سرد کردن مصالح سنگی کمتر از سرد کردن آب است، اما می توان با دپو کردن مصالح سنگی در سایه و به دور از پرتو مستقیم خورشید و با آب پاشی کنترل شده دپو به نحوی که گرما با تبخیر آب از بین رود، به سادگی و با هزینه پایین دمای بتن را به طور قابل قبولی کاهش داد. از روش های دیگر مورد استفاده می توان به پوشاندن لوله های آب، رنگ کردن تمامی لوله ها و مخازن روباز با رنگ سفید، آب پاشی قالب ها پیش از اقدام به بتن ریزی، و اقدام به بتن ریزی در عصر را نام برد.

درخصوص انتخاب نسبت های اختلاط مناسب برای کاهش تاثیر دمای بالای هوا، مقدار سیمان باید تا حد امکان کم باشد، به طوری که کل حرارت هیدراسیون پایین باشد. برای اجتناب از مشکلات کارایی، نوع و دانه بندی مصالح سنگی باید به گونه ای انتخاب شود که از نرخ های بالا جذب آب اجتناب شده و مخلوط به اندازه کافی چسبنده باشد. همچنین وجود ناخالصی هایی از قبیل سولفات ها نه تنها همواره نامطلوب است، بلکه در این مورد خاص نیز می تواند سبب گیرش آنی یا کاذب شوند.

برای کاهش افت کارایی و همچنین افزایش زمان گیرش می توان از یک ماده افزودنی کندگیرکننده استفاده کرد. مزیت این ماده افزودنی جلوگیری از تشکیل درزهای سرد در لایه های بتن ریزی متوالی می باشد. ممکن است، برای برخی کاربردهای ویژه مقدار مصرف بالای این ماده افزودنی الزامی باشد و از سوی متخصصان مواد افزودنی توصیه شود.

 

 

تبخیر آب از مخلوط پس از بتن ریزی اجتناب ناپذیر است. اجتناب نرخ های تبخیر از kg/m2 25/0 (lb/ft2 05/0) برساعت از سطوح روباز بتنی برای حصول اطمینان از عمل آوری مناسب و جلوگیری از جمع شدگی پلاستیک الزامی است. نرخ تبخیر به دماهای هوا، دمای بتن، رطوبت نسبی هوا و سرعت باد بستگی داشته و مقدار آن را می توان از شکل 2 تخمین زد. بتن باید از نور خورشید محافظت شود، در غیر این صورت، اگر شب سردی فرا رسد، احتمال ترک خوردگی حرارتی در اثر مهار انقباض ناشی از سرد شدن و نه الزاماً از گرمای هوا وجود خواهد داشت. وسعت ترک خوردگی با اختلاف دمای بین بتن و هوای اطراف آن رابطه مستقیم دارد.

در آب و هوای خشک، خیس کردن بتن و فراهم آوردن شرایط تبخیر به خنک شدن و همین طور عمل آوری موثر بتن منجر می شود. سایر روش های عمل آوری تاثیر کمتری خواهند داشت. در صورت استفاده از غشاها یا ورقه های پلاستیکی باید رنگ آنها سفید باشد به طوری که پرتو خورشید را بازتاب دهند. سطوح بتنی بزرگ روباز از قبیل بزرگراه ها یا باندهای پرواز در برابر این نوع مشکلات حرارتی آسیب پذیری بیشتری دارند و بتن ریزی و عمل آوری چنین بتن هایی باید با دقت برنامه ریزی و اجرا شود.

 

نمودار تاثیر دما روی بتن

 

 

شکل 2 تاثیر دمای هوا و بتن، رطوبت نسبی و سرعت باد بر نرخ تبخیر رطوبت سحطی از بتن

(براساس آیین نامه ACI 305.R-99).

 

3- بتن های حجیم

هنگام بتن ریزی حجم های زیاد بتن ساده (غیر مسلح) به عنوان مثال در سدهای وزنی، احتمال ترک خوردگی حرارتی به دلیل مهار انقباض هنگام کاهش دما از دمای نقطه اوج که ناشی از حرارت هیدراسیون سیمان است، وجود دارد. چنین ترک خوردگی ممکن است، چندین هفته گسترش یابد. جدا از این موضوع، خطر ترک خوردگی حرارتی در سنین اولیه بتن در مقاطع نازکتر نیز وجود دارد، مگر اینکه این مقاطع به طور مناسب آرماتورگذاری شوند.

 

ترک خوردگی حرارتی باید به وضوح از ترک خوردگی پلاستیک که در سطح یا در نزدیکی سطح بتن و در هنگامی که بتن هنوز حالت پلاستیک دارد و تبخیر سریع آب از آن اتفاق می افتد، تشخیص داده شود. همچنین این نکته را می توان اضافه کرد که خشک شدن می تواند سبب ترک خوردگی ناشی از جمع شدگی شود که معمولاً کمی دیرتر از ترک خوردگی حرارتی به وجود می آیند.

زمانی که یک جرم بتنی در تماس با جو قرار دارد، به این دلیل که داخل آن داغ و سطح خارجی آن در حال انتقال حرارت به محیط است، دچار گرادیان حرارتی می شود. بنابراین در قسمت داخلی بتن که در برابر انبساط حرارتی کاملاً مقید شده است، تنش فشاری ایجاد می شود که باتنش کششی خارجی موازنه می شود.

 

اگر چه هر دو نوع تنش در اثر خزش جزئی آزاد می شوند، اما تنش کششی ممکن است به اندازه کافی برای ایجاد ترک خوردگی سطحی بزرگ باشد. مادامی که بتن شروع به سرد شدن و انقباض می کند، تنش کششی در قسمت خارجی بتن آزاد شده و هر نوع ترک سطحی بسته می شود و علاوه بر این، اینگونه ترک ها معمولاً بی ضرر هستند. از آنجا که انقباض قسمت های داخلی بیشتر از انقباض قسمت های خارجی است، کرنش در قسمت های داخلی مهار شده و برای موازنه با تنش فشاری موجود در قسمت های خارجی، در قسمت داخلی بتن تنش کششی ایجاد می شود. به دلیل بلوغ بیشتر بتن در فاز سرد شدن، کرنش آزاد شده توسط خزش در این فاز کمتر از فاز گرم شدن است. بنابراین، ممکن است، تنش کششی ایجاد شده در اثر مهار داخلی در فاز سرد شدن برای ایجاد ترک خوردگی در داخل بتن به اندازه کافی بزرگ باشد. از این رو، به منظور اجتناب از ترک خوردگی الزامی است که اختلاف یا گرادیان دما در بتن محدود شود.

از طرف دیگر، زمانی که کل حجم بتن در برابر هوای خازج یا زمین عایق می شود، به گونه ای که دما در کل جرم بتن یکنواخت باشد، ترک خوردگی تنها در صورتی اتفاق خواهد افتاد که انقباض کل یا بخش خارجی بتن طی دوره سرد شدن مهار شود. به نوع مهارشدگی، مهار خارجی می گویند و برای اجتناب از ترک خوردگی ناشی از آن الزامی است که اختلاف بین دمای نقطه اوج بتن و دمای محیط و یا مهارشدگی به حداقل ممکن برسد. اختلاف قابل قبول بین دمای نقطه اوج بتن و دمای نهایی محیط باید در هنگام استفاده از مصالح سنگی شن فلینت به حدود 20 درجه سلسیوس (36 درجه فارنهایت)، هنگام استفاده از مصالح سنگی سنگ آهکی خاص به حدود 40 درجه سلسیوس (72 درجه فارنهایت) محدود گردد. اما هنگام استفاده از برخی از مصالح سنگی سبک دانه می تواند تا 130 درجه سلسیوس (234 درجه فارنهایت) نیز برسد.

برای به حداقل رساندن اختلاف یا گرادیان دما می توان از چندین روش به شرح زیر استفاده کرد:

 

الف) اجزای تشکیل دهنده مخلوط را با استفاده از هر یک از روش های ذکر شده سرد کرد، به طوری که دمای بتن تازه تا حدود 7 درجه سلسیوس (45 درجه فارنهایت) کاهش یابد. با این روش اختلاف بین دمای نقطه اوج و دمای محیط در فاز سرد شدن کاهش خواهد یافت.

ب) سطح بتن را تنها در مقاطع نازکتر از حدود 500 میلیمتر (یا 20 اینچ) با استفاده از قالب هایی که عایق بندی کمی دارند، مانند قالب های فولادی سرد کرد. در این مورد، سرد کردن سطح بتن، افزایش دمای قسمت مرکزی بتن را بدون اینکه موجب گرادیان های دمایی مضر و در نتیجه ایجاد مهار داخلی شود، کاهش می دهد.

ج) کل سطح بتن (شامل سطح فوقانی) در مقاطع بزگ تر از 500 میلیمتر (یا 20 اینچ) را با استفاده از یک ماده مناسب برای قالب بندی بتن از محیط اطراف مجزا ساخت، به طوری که گرادیان های حرارتی به حداقل مقدار خود برسد. در این حالت بتن به شرط عدم وجود مهار خارجی آزادانه منبسط و منقبض می شود.

د) اجزای تشکیل دهنده بتن به دقت انتخاب شود.

انتخاب اجزای تشکیل دهنده بتن علاوه بر دما به عوامل موثر بر ترک خوردگی نیز بستگی دارد. انتخاب مصالح سنگی مناسب می تواند به کاهش ضریب انبساط حرارتی بتن و افزایش ظرفیت کرنش کششی آن کمک کند. به عنوان مثال، بتن ساخته شده از مصالح سنگی تیزگوشه دارای ظرفیت کرنش کششی بیشتری نسبت به بتن ساخته شده از مصالح سنگی گردگوشه است. به طور مشابه، مصالح سنگی سبک ظرفیت کرنش کششی بیشتری را نسبت به مصالح سنگی با وزن معمولی نتیجه می دهند. البته این مزیت تا حدی با لزوم مقدار سیمان بیشتر در بتن ساخته شده با مصالح سنگی سبک با مقاومت و کارایی مشابه جبران می شود.

 

سیمان ریزی

به طور کلی، استفاده از سیمان با حرارت زایی پایین، جایگزین کردن پوزولان، مصرف مقدار سیمان کمتر و استفاده از مواد افزودنی کاهنده آب در کاهش دمای نقطه اوج مفید هستند. انتخاب نوع سیمان براساس مشخصات تولید حرارت که برافزایش دما تاثیر می گذارد، یعنی نرخی که در آن حرارت تولید می شود و همچنین حرارت کل، صورت می گیرد. البته هرچه مقدار سیمان در واحد حجم بتن بیشتر باشد، میزان حرارت کل بیشتر خواهد بود. در مقاطع کوچک، نرخ افزایش حرارت باتوجه به میزان حرارت تولید شده اهمیت قابل توجهی پیدا می کند، زیرا حرارت به آهستگی پخش می شود، درحالی که در مقاطع حجیم افزایش حرارت به دلیل خود عایق بندی، بیشتر به حرارت کل تولید شده بستگی دارد.

 

بنابراین می توان مشاهده نمود که افزایش حرارت به یک سری از عوامل از قبیل نوع و مقدار سیمان (یا به بیان دقیقتر به نوع و مقدار تمامی مواد سیمانی)، اندازه مقطع، مشخصات عایق بندی قالب و دمای بتن ریزی بستگی دارد. باتوجه به مورد آخر می توان به این نکته اشاره کرد که دمای بالاتر در زمان بتن ریزی موجب هیدراسیون سریعتر سیمان و افزایش دمای بیشتر می شود.

در عمل، مخلوطی از سیمان پرتلند ضدسولفات (نوع V) و سرباره آسیاب شده کوره آهن گدازی کمترین افزایش دما را ایجاد می کنند. بهترین ترکیب بعدی، مخلوط سیمان پرتلند معمولی (نوع I) و سرباره و پس از آن جایگزین کردن سیمان پرتلند با خاکستر بادی (PFA) است. در مقاطع بتنی حجیم، مقدار مواد سیمانی یعنی سیمان به اضافه سرباره یا خاکستر بادی، بیش از آنکه براساس مقاومت فشاری مشخصه 28 روزه، که نیازی نیست بیش از MPa 14 (psi 2000) باشد، انتخاب شود؛ تحت تاثیر ملزومات نفوذناپذیری و دوام (حداکثر نسبت آب به سیمان) قرار دارد. به هر حال، در بتن سازه ای مسلح ممکن است، مقاومت اولیه بالاتر یک معیار بحرانی به حساب آید، به طوری که ممکن است، از سیمان پرتلند معمولی (نوع I) تنها و در مقادیر بالا استفاده شود. بنابراین پذیرفتن روش های جایگزین دیگر برای به حداقل رساندن اثرات موثر افزایش دما الزامی است.

 

قبلاً به اختلاف دماهای قابل قبول اشاره کردیم. اگر چه اختلاف دما در یک حالت معین با علم به مشخصات دمایی بتن و عایق گرمایی آن قابل محاسبه است، اما در عمل، دما باید در نقطه های مختلف با یک ترموکوپل اندازه گیری شود. آنگاه این امکان وجود خواهد داشت که عایق بندی بتن به نحوی اصلاح شود که اختلاف های دمایی محدود شوند. عایق بندی باید با افت حرارت به وسیله تبخیر و همین طور انتقال و تابش کنترل شود. در ابتدای کار باید از یک غشای پلاستیکی یا ترکیبات عمل آوری استفاده کرد، درحالی که یک تخته صاف، بتن را در مقابل سایر حالت های افت حرارت عایق خواهد کرد. لحاف های با روکش پلاستیکی در تمامی موارد مفید هستند.

زمان باز کردن قالب از نقطه نظر به حداقل رساندن اختلاف های دمایی حائز اهمیت می باشد. باز کردن زودهنگام قالب در مقاطع نازک، کمتر از 500 میلیمتر (200)، امکان سرد شدن سریعتر را به سطح بتن می دهد. به هرحال، عایق بندی در مقاطع حجیم منفرد باید تا هنگامی که کل مقطع به اندازه کافی خنک شد، در جای خود باقی بماند، به طوری که هنگام باز شدن قالب به طور کامل، افت دمای سطحی بیش از مقدار ارائه شده به عنوان مثال 10 درجه سلسیوس (18 درجه فارنهایت) برای بتن ساخته شده با مصالح سنگی شن فلینت نباشد. دلیل مقدار کمتر برای اختلاف دماهای قابل قبول این است که هنگامی که عایق بندی برداشته می شود، خنک شدن سریعتر اتفاق می افتد، طوری که خزش نمی تواند به افزایش ظرفیت کرنش کششی بتن کمک کند. به این دلیل ممکن است، قالب بندی و عایق بندی مقاطع بزرگ تا دو هفته پیش از اینکه بتن تا حد دمای مطمئن سرد شود، در جای خود باقی بماند. به هر حال، این روش در صورتی که مقطع در معرض مهار خارجی قرار بگیرد، از ترک خوردگی جلوگیری نمی کند و باید سایر روش های چاره ساز دیگر نیز مورد بررسی قرار گیرند. این روش ها شامل توالی ساخت و فراهم نمودن درزهای حرکتی هستند.

4- بتن ریزی در آب و هوای سرد

مشکلات بتن ریزی در آب و هوای سرد برخاسته از عمل یخ بندان بر بتن تازه است. اگر بتنی که هنوز گیرش نیافته است، یخ بزند، آب اختلاط به یخ تبدیل شده و حجم کلی بتن افزایش می یابد. ازآنجا که در شرایط موجود آبی برای واکنش های شیمیایی وجود ندارد، گیرش و سخت شدن بتن به تاخیر می افتد و در نتیجه مقداری از خمیر سیمان در اثر تشکیل یخ گسیخته می شود. زمانی که این یخ در سنین بعدی ذوب می شود، بتن در شرایط منبسط شده، گیرش یافته و سخت خواهد شد، به طوری که بتن حاوی حجم بالایی از منافذ خواهد بود و در نتیجه مقاومت آن کاهش خواهد یافت.

 

امکان ویبره کردن مجدد بتن در لحظه ذوب شدن یخ و در نتیجه تراکم مجدد آن وجود دارد، اما به طور کلی، چنین روشی به دلیل اینکه تعیین دقیق زمان شروع گیرش در بتن مشکل است، توصیه نمی شود.

در صورتی که ذوب شدن یخ بعد از گیرش بتن و پیش از اینکه مقاومت بتن به حد قابل قبولی برسد، اتفاق بیفتد، انبساط همراه با تشکیل یخ سبب گسیختگی و افت غیرقابل بازگشت مقاومت می شود. به هر حال، در صورتی که بتن بتواند پیش از یخ زدن به یک مقاومت کافی برسد، می تواند در برابر فشارهای داخلی تولید شده به وسیله تشکیل یخ حاصل از آب اختلاط باقی مانده، مقاومت کند. در این مرحله مقدار یخ تشکیل شده، کم است، زیرا مقداری از آب اختلاط بتن در فرآیند هیدراسیون سیمان ترکیب شده و مقداری نیز در حفره های ژلی کوچک قرار گرفته که قادر به یخ زدن نیستند. متاسفانه تعیین سنی که درآن بتن به اندازه کافی برای پایداری در برابر یخ زدن مقاوم است، ساده نیست. البته تعدادی داده های سرانگشتی موجود هستند. به طور کلی، هیدراسیون پیشرفته سیمان و مقاومت های بیشتر بتن آسیب پذیری در برابر عمل یخ بندان را کاهش می دهند.

 

علاوه براینکه بتن باید در سنین اولیه در برابر عمل یخ بندان محافظت شود، همچنین باید در زمان خدمت دهی در برابر چرخه های بعدی یخ زدن و ذوب شدن، در صورت وقوع، پایدار است. در اینجا، تنها به جلوگیری از یخ زدن بتن تازه و محافظت آن طی هیدراسیون اولیه می پردازیم. برای حصول این امر باید اطمینان حاصل کرد که دمای بتن ریزی به اندازه کافی برای جلوگیری از یخ زدن آب اختلاط بالا بوده و بتن از نظر دمایی برای مدت زمان کافی تا رسیدن به مقاومت مناسب محافظت شده است. جدول 1.9 دماهای حداقل توصیه شده برای بتن ریزی را به ازای دماهای مختلف هوا و اندازه های متفاوت مقطع در زمان بتن ریزی در آب و هوای سرد ارائه می دهد. می توان مشاهده کرد که دماهای قابل قبول حداقل برای بتن به عنوان دماهای بتن ریزی و نگهداری برای مقاطع بزرگ تر به دلیل افت حرارتی کمتر، پایین تر خواهد بود. از همان جدول می توان متوجه شد، هنگامی که دمای هوا زیر 5 درجه سلسیوس (40 درجه فارنهایت) است، بتن باید به دلیل افت های حرارتی که طی حمل و بتن ریزی اتفاق می افتد، در دماهای بالاتر مخلوط شود. علاوه بر این، باید اطمینان حاصل کرد که بتن تازه در برابر سطح یخ زده ریخته نشده باشد. علاوه بر این برای اجتناب از احتمال ترک خوردگی حرارتی در 24 ساعت اول پس از اتمام دوره محافظت و هنگامی که بتن تا دمای محیط اطراف سرد می شود نباید حداکثر افت مجاز دما طی این 24 ساعت از مقادیر ارائه شده در جدول 1 بیشتر باشد.

جدول 1.9 دماهای توصیه شده بتن برای بتن ریزی در آب و هوای سرد.

دمای هوا

حداقل ابعاد مقطع

 

کوچکتر از
mm 300 (in 12)

300 تا mm 900

(12 تا in 36)

900 تا mm 1800

(36 تا in 72)

بالاتر از
mm 1800 (in 72)

حداقل دمای بتن هنگام ریختن و نگهداری

(°F 55) °C 10

(°F 50) °C 10

(°F 45) °C 7

(°F 55) °C 13

حداقل دمای بتن هنگام اختلاط برای دمای هوا

بالای (°F 30) °C 1-

18- تا (0 تا °F30) °C 1-

زیر (°F 0) °C 18-

(°F 60) °C 16

(°F 65) °C 18

(°F 70) °C 21

(°F 55) °C 13

(°F 60) °C 16

(°F 65) °C 18

(°F 50) °C 10

(°F 55) °C 13

(°F 60) °C 16

(°F 45) °C 7

(°F 50) °C 10

(°F 55) °C 13

 

حداکثر افت دمای مجاز در 24 ساعت اول پس از پایان محافظت

°C 28 (°F 50)

°C 22 (°F 40)

°C 17 (°F 30)

°C 11 (°F 20)

 

جدول 2 زمان های محافظت توصیه شده برای بتن ریزی در آب و هوای سرد (با استفاده از بتن هوازایی شده).

نوع سیمان، ماده افزودنی، مقدار سیمان

زمان نگهداری متناسب با سطح اطمینان مقاومت (روز) برای گروه خدمت دهی

بدون بار،

در معرض

شرایط محیطی

بدون بار،

در معرض

شرایط محیطی

با بار جزئی،

در معرض

شرایط محیطی

با بار کامل،

در معرض

شرایط محیطی

سیمان معمولی (نوع I)،

اصلاح شده (نوع II)

 

سیمان تندگیر (نوع III) یا

تسریع کننده یا kg/m360

(lb/yd3 100) سیمان اضافی

2

 

 

1

3

 

 

2

6

 

 

4

جدول 3.9 را ببینید

 

 

جدول 3.9 را ببینید

 

 

ممکن است به این نکته توجه شود که بتن ساخته شده از مصالح سنگی سبک حرارت بیشتری را نگه می دارند، به طوری که می توان از دماهای حداقل کمتری در زمان بتن ریزی یا نگهداری بتن بهره برد.

مدت زمان محافظت پیوسته برای بتن حباب هوازایی شده ساخته شده با مصالح سنگی سبک که در دماهای توصیه شده در جدول 1 بتن ریزی و نگهداری شده اند، در جدول 2 نشان داده شده است. البته باید در جاهایی که احتمال وقوع یخ زدن و ذوب شدن در دوره خدمت دهی بتن وجود دارد، از بتن هوازایی شده استفاده شود، اما در صورتی که الزاماً باید در ساخت از بتن بدون حباب هوا استفاده کرد، زمان های محافظت نشان داده شده در جدول 2 باید حداقل دو برابر شوند، زیرا چنین بتنی، به خصوص در وضعیت اشباع، بیشتر در برابر صدمه یخ بندان آسیب پذیر است. دوره های زمانی محافظت نشان داده شده در جدول 2 به نوع و مقدار سیمان، استفاده یا عدم استفاده از تسریع کننده و شرایط خدمت دهی بستگی دارد. زمان های محافظت باید این اطمینان را ایجاد کنند که از صدمه یخ بندان در سنین اولیه و مسائل دوامی در سنین بعدی اجتناب خواهد شد.

 

بتن ریزی

 

دوره های زمانی برای مواردی که نسبت بالایی از مقاومت طراحی بتن سازه ای باید پیش از قالب برداری و شمع گذاری ایمن کسب شود، در جدول 3 ارائه شده است. این مقادیر به طور متداول برای مقاومت 28 روزه 21 تا MPa 34 (3000 تا psi 5000) ارائه شده اند. مقادیر متناظر برای دوره های محافظت در سایر شرایط خدمت دهی و انواع دیگر باید از رابطه مقاومت از پیش تعیین شده – بلوغ بتن استنباط شود.

از جدول های 2 و 3 چنین به نظر می رسد که برای حصول نرخ های بالای گسترش حرارت (و در نتیجه افزایش دمای اولیه) باید از سیمان پرتلند زودگیرکننده بتن (نوع III) یا ماده افزودنی تندگیرکننده و ترجیحاً از یک مخلوط پرعیار دارای نسبت آب به سیمان کم استفاده شود.

قبلاً به حداقل دمای لازم بتن در زمان بتن ریزی اساره شد. هدف رسیدن به دمایی بین 7 تا 21 درجه سلسیوس (45 تا 70 درجه فارنهایت) می باشد. تجاوز از دمای بالا می تواند منجر به تاثیر نامطلوب برمقاومت بلند مدت گردد. دمای بتن در زمان بتن ریزی تابعی از دمای اجزای تشکیل دهنده مخلوط است و می توان آن را با معادله 1 محاسبه کرد. در صورت لزوم می توان اجزای تشکیل دهنده بتن را گرم کرد.

 

جدول 3 زمان های محافظت توصیه شده برای بتن بارگذاری شده امل در آب و هوای سرد.

نوع سیمان

دوره نگهداری (روز)

درصد مقاومت 28 روزه

50

65

85

95

سیمان پرتلند معمولی (نوع I)

سیمان پرتلند اصلاح شده (نوع II)

سیمان پرتلند تندگیر (نوع III)

برای دمای بتن (°F 50) °C 10

6

9

3

11

14

5

21

28

16

29

35

26

 

برای دمای بتن (°F 70) °C 21

سیمان پرتلند معمولی (نوع I)

سیمان پرتلند اصلاح شده (نوع II)

سیمان پرتلند تندگیر (نوع III)

4

6

3

8

10

4

16

18

12

23

24

20

 

از مطالب ذکر شده در بخش بتن ریزی در آب و هوای گرم چنین برداشت می شود که گرم کردن آب ساده تر و موثرتر می باشد، اما تجاوز از دمای 60 تا 80 درجه سلسیوس (140 تا 180 درجه فارنهایت) از آنجا که ممکن است، منجر به گیرش آنی سیمان شود، نامطلوب خواهد بود. این موضوع ناشی از اختلاف دمای بین آب و سیمان است. همچنین جلوگیری از تماس مستقیم سیمان با آب داغ از آنجا که می تواند منجر به انباشتگی سیمان (گلوله های سیمان) شود، حائز اهمیت است و به این دلیل ترتیب ریختن مواد به درون مخلوط کن باید دارای نظم مناسبی باشد.

در صورتی که گرم کردن آب، دمای بتن را به اندازه کافی بالا نبرد، می توان مصالح سنگی را به طور غیرمستقیم یعنی با جریان بخار درون لوله های مارپیچ تا حدود 52 درجه سلسیوس (125 درجه فارنهایت) گرم کرد. گرم کردن مستقیم با بخار می تواند منجر به افزایش قابل توجه مقدار رطوبت مصالح سنگی شود. زمانی که دمای مصالح سنگی کمتر از صفر درجه سلسیوس (18 درجه فارنهایت) است، رطوبت جذب شده در حالت منجمد قرار دارد. بنابراین، نه تنها فرآیند گرم کردن مستلزم افزایش دمای یخ از دمای مصالح سنگی Ta به صفر درجه سلسیوس (18 درجه فارنهایت) می باشد، بلکه مستلزم تغییر حالت یخ به آب (گرمای نهان ذوب) نیز می باشد.

 

پس از بتن ریزی می توان دمای کافی برای بتن را از طریق عایق بندی بتن از جو و در صورت لزوم، با ساخت یک فضای بسته در اطراف سازه به شرط اینکه منبع حرارت درون فضای بسته باشد، تامین کرد. نحوه گرمادهی باید به گونه ای باشد که بتن سریعاً خشک نشده و دمای بخشی از آن، بیش از حد بالا نرود. همچنین منجر به غلظت بالای گاز CO2 (که می تواند سبب کربناسیون شود) در جو نشود. به دلایل ذکر شده، احتمالاً جریان بخار بهترین منبع گرما می باشد. در برخی مواقع از قالب های فولادی پوشش دار با آب داغ استفاده می شود.

دمای بتن در سازه های مهم باید به طور منظم تحت نظر باشد. در تصمیم گیری در مورد محل قرارگیری ئماسنج ها یا ترموکوپل ها باید یادآوری شود که گوشه ها و ضلع های مقاطع بتنی نسبت به عمل یخ بندان آسیب پذیر هستند. نظارت بر دمای بتن این امکان رافراهم می سازد که بتوان عایق بندی یا گرمادهی به بتن را باتوجه به شرایط محیطی از قبیل وزش بادی که دمای هوا را به طور ناگهانی کاهش می دهد و یکی از شرایط پیشروی عمل یخ بندان است، تنظیم نمود. از طرف دیگر، برف به عنوان یک عایق عمل کرده و در نتیجه یک محافظت طبیعی را به وجود می آورد.

  • مسعود اسماعیلی