کلینیک بتن ایران| تولید انواع مواد شیمیایی بتن و قطعات جانبی بتن

کلینیک بتن ایران با نوآوری و فن آوری در زمینه بتن، مواد افزودنی بتن، شیمی بتن، فرآورده های شیمیایی بتن، فرآورده های ساختمانی بتن که جزئی از سیاست های زیر بنایی تحقیقاتی خود همیشه می کوشد تا بهترین باشد.

مبلمان اداری
بهترین قیمت مبلمان اداری
www.fazagooya.com

پیام آوران پارسیان
شرکت پیام آوران پارسیان
www.papgroup.ir

خرید مبلمان اداری آفن
مبلمان و میز اداری با بهترین قیمت
www.afn-furniture.com

Mother Of Gilan,Rasht
ferdowsi hotel in tehran
www.ferdowsihotel.com/en

خرید گوسفند زنده
مرکز خرید گوسفند زنده
www.alivesheep.com

جراحی های زیبایی پرطرفدار در سال جدید
مرکز تخصصی خدمات زیبایی
www.clinicsurgery.ir

باغ عروسی
خدمات و تشریفات مجالس عروس
www.tashrifataroos.com

مهمترین و خاص ترین وظایف تشریفات عروسی
تشریفات مجالس رویای طلایی
www.royayetalaei.com

کلید سازی
کلید سازی تهران سیار و شبانه روزی
www.kelidsazitehran.com

ردیاب خودرو
خرید ردیاب خودرو
www.kavoshcom.com

کندی بار در مراسم عروسی
خدمات مجالس صبور
www.tashrifatsabour.com

نمایندگی عینک زایس
نمایندگی کارل زایس در ایران
www.maadrac.com

سقف کاذب
انواع سقف کاذب
www.azaran.com

انتخاب تم تولد
تشریفات مجالس ثمین
www.tashrifatsamin.com

کاغذ دیواری
بهترین انواع کاغذ دیواری
www.azinzand.com/fa

خدمات مجالس
تشریفات مجالس مقصودلو
www.maghsoudloocatering.com

تخلیه چاه
شرکت خدمات فنی آریا
www.evacuation.ir

ردیاب خودرو
بهترین ردیاب آنلاین خودرو
www.wizerco.com

جراحی بلفاروپلاستی
کلینیک چشم پزشکی بینایی
www.binaii.com

آتلیه کودک
آتلیه عکاسی کودک
www.bridalphotographystudio.com

اشتباهات رایج در حکاکی با لیزر
شرکت بین المللی پرسناژ
www.personageco.com

آموزش پاکسازی پوست
موسسه تالگو پاریس
www.thalgoparis.com

ضد یخ بتن
تولید کننده مواد شیمیایی ساختمان
www.clinicbeton.ir

آژانس هواپیمایی مهرپرواز
آژانس گردشگری مهرپرواز
www.mehrparvaz.com

تفاوت جراحی پلاستیک با جراحی زیبایی
کلینیک های تخصصی زیبایی
www.clinichairtransplantation.com

یاسمین سیر
آژانس مسافرتی یاسمین سیرآسیا
www.yasminseyr.com

آژانس هواپیمایی الفبای سفر
برگزار کننده بهترین تورهای ترکیه
www.alefbatour.com

کلاس تیزهوشان راه اندیشه
آموزشگاه کنکور راه اندیشه
www.raheandisheh.ir

قفسه بندی
ساخت و اجرای سیستم قفسه بندی
www.fazasazanamin.com

بلیط هواپیما
خرید مستقیم بلیط هواپیما
www.jibojet.com

سالن زیبایی مهسا ممتاز
سالن آرایش مهسا ممتاز
www.mahsamomtaz.com

تالار عروسی عرشیا
مجتمع گردشگری عرشیا
www.talararous.com

آژانس هواپیمایی آسمان آبی
آژانس گردشگری آسمان آبی
www.asemanabi.net

آژانس هواپیمایی اوج ماندگار
آژانس گردشگری اوج ماندگار
www.oujmandegar.com
طراحی سایت و سئو :پیام آوران پارسیان
وبلاگ مبلمان اداری فضاگویا
بهترین قیمت مبلمان اداری
fazagooya.blogspot.com

وبلاگ مبلمان اداری آفن
مبلمان اداری لوکس آفن
afn-furniture.blogspot.com

وبلاگ خدمات مجالس صبور
خدمات مجالس صبور
tashrifatsabour.blogspot.com

وبلاگ مبلمان اداری آذران
انواع مختلف پارتیشن های با کیفیت
azaran-fazanam.blogspot.com

وبلاگ تشریفات ثمین
تشریفات مجالس ثمین
tashrifatsamin.blogspot.com

وبلاگ کاغذ دیواری آذین زند
کاغذ دیواری کلاسیک با بیشترین تنوع
azinzand.blogspot.com

وبلاگ تشریفات عروسی مقصودلد
لوکس ترین باغ عروسی
maghsoudloocatering.blogspot.com

وبلاگ ردیاب وایزر
بهترین ردیاب آنلاین خودرو
wizerco.blogspot.com

وبلاگ کلینیک بینایی
کلینیک چشم پزشکی بینایی
binaii.blogspot.com

وبلاگ مجموعه برش لیزری پرسناژ
شرکت بین المللی پرسناژ
personageco.blogspot.com

وبلاگ آژانس مسافرتی آرزوی آسمان آبی
آژانس مسافرتی آسمان آبی
asemaneabitravel.blogspot.com

وبلاگ کلینیک بتن ایران
تولید کننده مواد شیمیایی ساختمان
clinicbeton.blogspot.com

وبلاگ آژانس مسافرتی مهرپرواز سیوان
آژانس هواپیمایی مهرپرواز
mehrparvaz.blogspot.com

وبلاگ تشریفات ملل
تشریفات و خدمات مجالس ملل
melalceremony1.blogspot.com

وبلاگ آژانس هواپیمایی الفبای سفر پارسیان
برگزار کننده بهترین تورهای خارجی
alefbatour.blogspot.com

وبلاگ مجموعه فضاسازان امین
طراحی و اجرای سیستم های قفسه بندی
fazasazanamin.blogspot.com

وبلاگ خرید اینترنتی بلیط هواپیما
خرید مستقیم بلیط هواپیما
jibojet.blogspot.com

طراحی وب سایت و سئو سایت :پیام آوران پارسیان

وبلاگ مبلمان اداری فضاگویا
بهترین قیمت مبلمان اداری
fazagooya.wordpress.com

وبلاگ مبلمان اداری آفن
مبلمان اداری لوکس آفن
afnfurniture.wordpress.com

وبلاگ خدمات مجالس صبور
خدمات مجالس صبور
tashrifatsabour.wordpress.com

وبلاگ مبلمان اداری آذران
انواع مختلف پارتیشن های با کیفیت
azaranblog.wordpress.com

وبلاگ تشریفات ثمین
تشریفات مجالس ثمین
tashrifatsamin.wordpress.com

وبلاگ کاغذ دیواری آذین زند
کاغذ دیواری کلاسیک با بیشترین تنوع
azinzand.wordpress.com

وبلاگ تشریفات عروسی مقصودلد
لوکس ترین باغ عروسی
maghsoudloocatering.wordpress.com

وبلاگ ردیاب وایزر
بهترین ردیاب آنلاین خودرو
wizerco.wordpress.com

وبلاگ کلینیک بینایی
کلینیک چشم پزشکی بینایی
binaii.wordpress.com

وبلاگ مجموعه برش لیزری پرسناژ
شرکت بین المللی پرسناژ
personageco.wordpress.com

وبلاگ آژانس مسافرتی آرزوی آسمان آبی
آژانس مسافرتی آسمان آبی
asemaneabitravel.wordpress.com

وبلاگ کلینیک بتن ایران
تولید کننده مواد شیمیایی ساختمان
clinicbeton.wordpress.com

وبلاگ آژانس مسافرتی مهرپرواز سیوان
آژانس هواپیمایی مهرپرواز
mehrparvaz.wordpress.com

وبلاگ تشریفات ملل
تشریفات و خدمات مجالس ملل
melalceremony.wordpress.com

وبلاگ آژانس هواپیمایی الفبای سفر پارسیان
برگزار کننده بهترین تورهای خارجی
alefbasafar.wordpress.com

وبلاگ مجموعه فضاسازان امین
طراحی و اجرای سیستم های قفسه بندی
fazasazanamin.wordpress.com

وبلاگ خرید اینترنتی بلیط هواپیما
خرید مستقیم بلیط هواپیما
jibojet.wordpress.com

طراحی وب سایت و سئو سایت :پیام آوران پارسیان

۴ مطلب در اسفند ۱۳۹۸ ثبت شده است

  • ۰
  • ۰

یک افزودنی ماده ای است فراتر از آب، سنگدانه ها، مواد سیمانی و تقویت کننده های فیبری که به منظور اصلاح ویژگی های تازه مخلوط، سخت شدگی و نیز گیرش بتن، به عنوان جزئی از مواد تشکیل دهنده بتن مورد استفاده قرار می گیرد که قبل از ترکیب شدن و یا بعد از آن به پیمانه (بچینگ) اضافه می شوند، تعدادی افزودنی های شیمیایی وجود دارند که اغلب آنها در SCC مورد استفاده قرار می گیرند.

 

علت استفاده

نوع افزودنی

کاهش میزان آب به منظور ایجاد ویسکوزیته کافی، تنظیم مقدار جهت افزایش یا کاهش جریان اسلامپ

 

افزایش ویسکوزیته به منظور ارتقاء و پایداری مخلوط و کاهش آب دهی

 

تامین و حفظ جریان اسلامپ / قابلیت کارایی بدون ایجاد کندسازی

 

افزایش زود هنگام پیشرفت مقاومت فشاری، تسهیل گیرش نرمال در دمای سرد

 

کاهش سرعت جذب آب سیمان جهت تاخیر در گیرش در دمای گرم، افزایش زمان قابلیت کارایی

 

افزایش دوام در مقابل یخ زدگی / ذوب شدگی و افزایش میزان خمیر مخلوط جهت ارتقاء جریان و پایداری

کاهش دهنده آب طیف بالا (HRWR)

 

 

افزایش اصلاح کننده ویسکوزیته (VMA)

 

افزودنی حفظ قابلیت کارایی

 

افزودنی کاتالیزور

 

 

افزودنی کنترل جذب آب و کندگیر

 

 

افزودنی هوا زا

برای مثال می توان از کاهش دهنده آب طیف بالا (HRWR) و یا از افزودنی اصلاح ویسکوزیته به ترتیب جهت کاهش جریان اسلامپ و افزایش پایداری مخلوط استفاده کرد. این یکی از ویژگی های کلی مواد شیمیایی است که آن را به صورت ابزاری قدرتمند در آورده است. هیچ گاه نباید از افزایش آب برای افزایش جریان اسلامپ استفاده کرد، به لحاظ تئوریک یک HRWR را برای افزایش سیالیت مخلوط و بدون نیاز به هیچ تنظیم کننده دیگری، می توان به کار برد.

 

اجرای بتن

فناوری پلی کربوکسیلات اتر

 

سابقاً توانایی ساختار مولکول های پاشنده و پراکنده سازها محدود شده بود، اما معرفی پاشنده های PCE، آن را تغییر داد. درحالی که پاشنده های قبلی عمدتاً تولیدات جانبی دیگر صنایع بودند، اکنون برای مولکول های مختلفی این امکان وجود دارد که تنها با هدف پخش سیمان پرتلند توسعه یابند. PCEها پلیمرهای شانه ای هستند. یعنی اینگونه توصیف شده اند که دارای یک ستون اصلی (شبیه ستون فقرات) و نیز زنجیرهایی که در یک طرف این ستون آویزانند و این مولکول ها در طول ستون اصلی، در محل اتصال، بار منفی می گیرند (شکل 1).

HRWRها با پایه PCE، دانه های سیمان را از طریق دو مکانیزم مکمل پراکنده می سازند. دفع الکترواستاتیکی و جلوگیری از تجمع.

دفع الکترواستاتیکی فرآیندی است که از طریق آن، در محل اتصال و در امتداد ستون اصلی، مولکول های پراکنده ساز (که عامل بار منفی می باشند) دانه های سیمان را جذب می کنند و به دلیل وجود همین بار روی سطح، دانه های سیمان یکدیگر را دفع می کنند و اکثر پراکنده سازها از این ترکیب عملکردی برخوردارند (شکل2).

PCEها همچنین دانه های سیمان پرتلند را از طریق ممانعت از تجمع نیز پخش می کنند که بیشتر یک فرآیند فیزیکی است. زنجیرهای جانبی معلق، از ذرات سیمان جدا می شوند و این عمل مانع از باز انباشتگی ذرات سیمان می شود (شکل 3).

 

ساختار PCE پلیمر شانه عمومی

شکل 1 ساختار PCE پلیمر شانه عمومی

رابطه ساختار / عملکرد PCE

توانایی در کنترل ساختار PCE، این اجازه را به یک شیمی دان می دهد تا پراکنده سازهای مختلفی را طراحی کند. مانند پاشنده (پراکنده سازی) ای که کاهش دهنده فوق العاده آب است و یا پاشنده ای که سطح بالای کار آمدی را در مدت زمان طولانی تری حفظ می کند.

دفع الکترواستاتیکی دانه های سیمان توسط مولکول های پراکنده ساز

شکل 2 دفع الکترواستاتیکی دانه های سیمان توسط مولکول های پراکنده ساز

ممانعت فضایی دانه های سیمان پخش کننده

شکل3 ممانعت فضایی دانه های سیمان پخش کننده

حفظ کار آمدی

حفظ کارایی برای مخلوط SCC مهم و حیاتی است و بدون آن SCC مزایای خود را از دست می دهد.

واکنش مقدارهای سه PCE برپایه HRWRها

شکل4 واکنش مقدارهای سه PCE برپایه HRWRها

 

PCE 3

PCE 2

PCE 1

HRWR

676

559

780

مقدار مصرف (ml/100 kg)

429

429

434

سیمان (kg/m3)

961

961

973

سنگدانه درشت (kg/m3)

853

853

865

سنگدانه ریز (kg/m3)

177

177

180

آب (kg/m3)

5/1

3/1

3/1

هوا %

100/0

100/0

200/0

بازده (g)

600/4

400/5

600/3

ویسکوزیته (چسبانیدگی)

660

660

660

رکود جریان (mm)

6/10

8/2

7/11

عامل تفکیک %

0

06/0

28/1

Bleed (%)

2/2

5/3

8/1

T50

5/1

1

2

VSI

جدول 2 تاثیر PCE بر ویسکوزیته و استقامت

 

PCE 2

PCE 1

HRWE

585

520

مقدار مصرف

339

340

سیمان نوع I (KG/M3)

60

60

خاکستر بادی کلاس F (kg/m3)

1070

1076

سنگدانه درشت (kg/m3)

822

827

سنگدانه ریز (kg/m3)

160

160

آب (kg/m3)

 

 

رکود جریان (mm)

660

675

اولیه (ابتدایی)

660

535

30 دقیقه اولیه

660

420

55 دقیقه اولیه

580

335

80 دقیقه اولیه

 

 

هوا %

4/1

9/0

اولیه (ابتدایی)

6/1

7/1

80 دقیقه اولیه

جدول 3 مقایسه حفظ کارایی بین دو PCE مختلف مبتنی بر HRWE ها

افزودنی های نگه دارنده قابلیت کارآمدی

همه افزودنی ها محدودیتی در زمان دارند که در طول این مدت، ویزگی های تازه و اصلی خود را حفظ می کنند. خارج از این محدوده زمانی، یک مخلوط SCC به یک مخلوط اسلامپ معمولی برای تراکم انرژی، کاهش خواهد یافت. اهمیت حفظ قابلیت کارآمدی مناسب برای SCC نباید دست کم گرفته شود بلکه باید برای آن برنامه ریزی کرد، بطور مثال یک تولید کننده پیش ساخته ممکن است زمان کمتری را برای انتقال و تکمیل بتن ریزی نسبت به پروژه ریخت درجا داشته باشد. معادله ساده ای که در زیر آمده است می تواند به تعیین مقدار حفظ قابلیت کارآمدی مورد نیاز کمک کند.

افزودنی های حباب زا و دیگر افزودنی ها

هوادهی در SCC امکان پذیر بوده و یک رویداد روزمره در بخش هایی از آمریکای شمالی می باشد. از آنجایی که میزان درصد هوای مورد نیاز در مخلوط ها متفاوت است، هوادهی افزودنی های بتن نیز باید دارای مقدار متفاوتی باشد. مشابه بتن معمولی هوازایی (حباب زایی) نیز تحت تاثیر تعدادی از فاکتورها می باشد، از قبیل اختلاط مخلوط (نسبت بندی)، درجه بندی سنگدانه های ریز، نوع مخلوط کن و کارایی مخلوط و همچنین وجود افزودنی های دیگر و نیز HRWR، هوازایی به ویژه در مورد SCC تحت تاثیر پایداری مخلوط است. هر چه پایداری مخلوط کمتر شود هوادهی به مخلوط سخت تر خواهد شد. زمانی که مخلوط نیاز به هوادهی دارد، تولید کننده بتن SCC باید پایداری مخلوط را ارزیابی کند، در عین حال که هوا باعث افزایش حجم خمیر می شود، پایداری مخلوط SCC نیز می تواند افزایش یابد. افزودنی های دیگری که می توانند بطور مداوم در تولید مخلوط های SCC به کار روند شامل کاهش دهنده های نرمال و متوسط آب علاوه بر افزودنی های ضدخوردگی افزودنی های رنگ مایع و غیره می باشند. اغلب افزودنی هایی که در تولید بتن معمولی استفاده می شود در SCC هم کاربرد دارد. همیشه توصیه های تولید کننده را برای ترکیب کردن مواد افزودنی چندگانه در مخلوط بتن، به کار گیرید. افزودنی های شیمیایی برای تولید مخلوط های SCC با کیفیت خوب مورد نیاز است. افزودنی های HRWR ضروری می باشند درحالی که دیگر افزودنی ها مانند VMAها و مخلوط های حفظ کارآمدی، معمولاً استفاده می شوند.

  • مسعود اسماعیلی
  • ۰
  • ۰

فرآیند ترکیب مواد خام برای ایجاد یک ترکیب SCC و فرآیند به کار رفته برای تعیین نسبت مربوط به بتن معمولی تفاوت زیادی با یکدیگر ندارند. روش حجم مطلق، برای تضمین حد تسلیم واقعی یک مکعب سنج یا یارد مکعب بتن بکار می رود. اگر چه فرآیند کلی مشابه می باشد، اما مفاهیمی وجود دارند که با جریان و پایداری بتن ارتباط دارند.

یک ترکیب بتن باید انتظارات عملکرد اکثر افراد یا گروه ها را در مدت زمان ماندگاری تامین کند، از تولید کننده بتن، پیمانکار و مجریان بتن ریزی تا مالک یا نماینده ایشان که هر یک از این گروه ها از نگرشی خاص نسبت به ویزگی های مهم مخلوط برخوردارند. طراحی مخلوط درست شامل ایجاد تعادل بین صرفه جویی، قابلیت کار، ویزگی های سخت شدگی و سهولت در باز تولید همین عملکرد، از یک بچینگ به بچینگ دیگر می باشد. هر یک از گروه های مذکور از SCC چه انتظاری دارند؟

 

  • تولید کننده بتن: تمایل تولید کننده بتن توسعه یک مخلوط بتن است که نیازهای عملکرد مشتری را تامین می کند و به راحتی و با صرف تلاش و هزینه منطقی باز تولید شود.
  • پیمانکار بتن: یک پیمانکار (یا تیم بتن ریزی در یک کارخانه تولید بتن پیش ساخته) مخلوط بتنی را می خواهند که به راحتی جایگیری شده و بدون تاخیر در زمان گیرش پرداخت شود ضمن اینکه به ویزگی های سخت شدگی لازم دست یابد (مطابق آنچه توسط مهندس طراحی شده است). پیمانکاری که ترکیب بتنی یکنواخت با ویزگی های تازگی و سخت شدگی می خواهد، باید هزینه منطقی آن را پرداخت نماید.
  • مهندسین طراح یا مشاورین، مالک یا نماینده مالک، خواهان ترکیب بتنی هستند که دارای ویژگی های سخت شدگی نهایی و ضروری برای ساخت و ساز است، از جمله زیبایی شناسی و ظاهر سطح تا عمر طولانی را برای سازه تامین کند. این تعادل نیازها و خواسته های چندگانه اساس تعیین نسبت ترکیب برای انواع بتن از جمله SCC می باشد. برای توسعه ترکیباتی که تمام این نیازها را تامین می کند، یک فهم دقیق تر از واکنش ذرات تشکیل دهنده مخلوط ضروری است.
  • ترکیب بتن: جدا کردن آن و قرار دادن هر کدام از آنها بر روی یکدیگر.
 

ویژگی های سخت شدگی برای تمام ترکیبات بتنی اهمیت خاصی دارد. SCC نسبت بندی می شود تا بتن ریزی و مقاومت را تسهیل بخشد، اما ویژگی تازه باید در مرحله دوم ویژگی هایی از قبیل مقاومت تراکمی، افت انقباض، خزش تراکمی، مدول الاستیسیته و سایر موارد قرار داشته باشد. متخصص بتن باید در مرحله اول به بازنگری ویژگی های سخت شدگی مورد نیاز برای پروژه بپردازد و تعیین کند که آیا آنها محدودیت هایی را بر انواع یا مقادیر مصالح به کار رفته در ترکیب SCC اعمال می کنند. ویژگی های سخت شدگی ممکن است بر نسبت آب به سیمان، محتویات آب، حجم مصالح دانه درشت، جمع خمیر و ترکیب پودر سیمانی و دیگر فاکتورها تاثیر بگذارند. در تعیین نسبت برای ویژگی های SCC باید این محدودیت ها را مدنظر قرار دهیم.

مواد تشکیل دهنده که برای نسبت ترکیبات SCC به کار می روند، غالباً همان موادی هستند که برای ترکیبات بتن معمولی به کار می روند: سیمان پرتلند، مصالح دانه ریز، مصالح دانه درشت، آب، ترکیبات شیمیایی، مصالح سیمانی مکمل و سایر موارد. یک تفاوت کاربرد پودرهای غیرسیمانی دانه ریز برای افزایش محتویات خمیری در SCC، همانند بتن معمولی می باشد. SCC می تواند از طریق بلوک هایی از خمیر و ملات ارزیابی گردد که در ذیل آن را تعریف می کنیم:

 

  • خمیر + هوا = سیمان + سایر پودرها (شامل ممصالح دانه ریز از کل مصالح) + آب و هوا
  • ملات = خمیر + مصالح دانه ریز
  • بتن = ملات + مصالح دانه درشت
 

دیدگاه معتبر دیگر بررسی بتن به عنوان ترکیبی از فاز سیالیت (خمیر) و فاز جامد (مصالح دانه ریز و درشت) است. در بعضی از جنبه ها، بتن مترادف یا مشابه بدن انسان است، مصالح جامد از اسکلت و خمیر همانند عضله عمل می نماید. روشی که در آن عضله و اسکلت توام با هم عمل می کنند، تعیین کننده نقطه قوت و تحرک بدن است و مشابه آن، ترکیب خمیر و مصالح دانه درشت با هم تعیین کننده تحرک بتن و به ویژه مخلوط بتن SCC است.

در این فصل، نسبت SCC از نقطه نظر خمیر و مصالح بررسی (مصالح دانه ریز و درشت که ترکیب شده اند) و بر تاثیر ویزگی تازه آنها تمرکز خواهد شد.

 

بررسی مصالح

زمان تعیین نسبت بندی یک مخلوط SCC، اطلاعات ذیل در مورد سنگدانه ها به کار می رود.

سنگدانه با ماکزیمم اندازه (MSA)

این ویژگی بر پتانسیل سنگدانه ها، توانایی عبور و قدرتمندی مخلوط تاثیر می گذارد. سنگدانه های بزرگتر دارای یک پتانسیل تفکیک بالاتر بوده و سنگدانه های کوچکتر قدرت ترکیب SCC را فزایش خواهند داد. زمان بحث و بررسی MSA و قابلیت عبور، تمایز بین عبارات «اندازه ماکزیمم» و «اندازه نرمال ماکزیمم» مناسب است. چرا که آنها گاهی به جای یکدیگر مورد استفاده قرار می گیرند. ترمینولوژی بتن ACI آنها را به صورت ذیل تعریف می کند:

  • اندازه ماکزیمم: در مشخصه های مربوط به سنگدانه ها و شرح آنها، کوچکترین شکاف الک که باید از میان آن کل مقادیر سنگدانه ها عبور کنند.
  • اندازه ماکزیمم نرمال: در مشخصه های مربوط به سنگدانه ها و شرح آنها، کوچکترین شکاف الک که باید از میان آن کل مقادیر سنگدانه هایی که امکان عبور پیدا می کنند، یعنی درصد کمی از نمونه ها ممکن است در این الک باقی بمانند.

برای نمونه، در یک درجه یا گرید ASTM C 33#57 ، ماکزیمم اندازه 5/37 میلی متر بوده و ماکزیمم اندازه اسمی 25 میلی متر است. زمان انتخاب اندازه سنگدانه ها برای یک ترکیب بتن اسلامپ رایج، ACI 211 عنوان می کند که بزرگترین اندازه ممکن باید به کار رود چرا که منجر به کاهش نیاز کاربر بتن به خمیر می شود. این در دو روش اتفاق می افتد: توزیع اندازه ذرات را گسترده تر می کند و این امکان را می دهد که بسته بندی ذرات متراکم تر شوند (با فرض یک سنگدانه با درجه بندی خوب) و مساحت سطح را کاهش می دهد.

ACI211 همچنین محدودیت های ذیل را در مورد اندازه ماکزیمم اسمی ارائه می دهد.

  • S 1/5 باریک ترین اندازه بین کناره های قالب
  • S 1/3 عمق دال ها
  • S 3/4 مینیمم فضای مشخص بین میله های تقویت جداگانه، دسته میله ها یا کابل های پیش تنیده.

وزن مخصوص

همانند تعیین نسبت در بتن معمولی، وزن مخصوص برای تبدیل جرم به حجم مطلق به کار می رود.

فضای خالی میان سنگدانه های ترکیبی

ارزیابی سنگدانه های محلی موجود به تعیین نسبت واقعی سنگدانه های ریز و درشت کمک می کند ولی جرم به کار رفته در یک ترکیب را تعیین نمی کند، اما غالباً نسبت واقعی سنگدانه ها تعیین می شود. زمانی که سنگدانه ها با یکدیگر ترکیب می شوند، ترکیب سنگدانه ها با یک حجم معین از فضای خالی بین ذرات ایجاد می شود. نسبت ترجیحی، نسبتی است که از کمترین حجم فضای خالی برخوردار باشد، چرا که این حجم خالی باید با خمیر گران قیمت تر پر گردد. فضای خالی ترکیبی به مفهوم تراکم در بسته بندی است. هر چقدر که توزیع اندازه ذره بیشتر باشد، سیستم به صورت متراکم تر بسته بندی می شود. انتخاب MSA نیز بر حجم فضای خالی تاثیر می گذارد. نسبت سنگدانه های موجود برای به حداقل رساندن فضای خالی می تواند از طریق انتخاب نسبتی سازی شود که با یک منحنی درجه بندی ایده آل بیشترین تناسب را دارد از قبیل مواردی که توسط فولر و تامسون و دیگران طراحی شدند.

شکل ذره و زاویه دار بودن ذرات

سنگدانه های گرد و هم اندازه از تراکم بسته بندی بالاتری نسبت به سنگدانه های گوشه دار و نامنظم برخوردارند. این اطلاعات نیز یک مسیر نسبی برای تعیین نسبت بندی ارائه می کند. هنگام نسبت بندی سنگدانه هایی که تخت و طویل می باشند، خمیر نسبتاً بیشتری برای دستیابی به جریان (به نسبت زمان استفاده از سنگدانه هایی با ابعاد برابر) مورد نیاز است. مشخصاً سنگدانه هایی با اشکال گوشه دار نیازمند خمیری بیشتر از سنگدانه های گرد است. ذرات هم اندازه و گرد نیز باعث ارتقاء و افزایش جابجایی و تحرک بهتر می شود.

تعیین درجه توزیع اندازه ذرات

درجه بندی کلی یک اسکلت سنگدانه ای نشانگر مساحت کل سنگدانه ها می باشد. با توجه به اینکه مساحت نسبتاض بالاتر و یا کمتر است شاخصی برای نسبت های اولیه و نیز تنظیمات آزمایشی ارائه می کند. برای ایجاد پایداری، آگاهی از میزان سنگدانه های عبوری از الک های 300 و 75 میکرومتر می تواند بر نسبت های سیمان یا سایر پودرهای موجود در این ترکیب تاثیر بگذارد.

بررسی بخش خمیر / سیال

خمیر برای عملکرد SCC حیاتی است، بدون خمیر کافی و مناسب ترکیب SCC مطلوب نخواهد بود (صرف نظر از اینکه چگونه سنگدانه ها درجه بندی شده و یا گرد و تمیز می باشند). هنگام نسبت بندی SCC، دو موضوع اصلی در خصوص خمیر مطرح است:

  • اندازه: حجم خمیر مورد استفاده چقدر است؟
  • رئولوژی خمیر چیست، چگونه مصالح جامد بدون ایجاد تفکیک و یا انسداد درون آن به راحتی حرکت می کنند؟

موضوعات متعدد برای کنترل خمیر (از حجم تا رئولوژی ترکیب) می پردازد

تصویر 8-2 به نمایش موضوعات متعدد برای کنترل خمیر (از حجم تا رئولوژی ترکیب) می پردازد.

آیتم هایی که در تعیین نسبت بخش خمیری / سیالیت در مخلوط SCC باید مورد توجه قرار گیرد

تصویر1 آیتم هایی که در تعیین نسبت بخش خمیری / سیالیت در مخلوط SCC باید مورد توجه قرار گیرد

حجم خمیر

 

تئوری خمیر اضافی نشان می دهد که برای تقویت جریان بتن، نه تنها باید فضاهای خالی بین ذرات جامد و سطوحی پوشیده شده پر شوند، بلکه یک خمیر اضافی دیگر نیز لازم است تا ذرات جامد را از یکدیگر جدا کند.

با یک ترکیب خمیر ثابت، زمانی که حجم خمیر و ضخامت لایه های خمیر در اطراف ذرات افزایش یابد احتمال برخورد سنگدانه ها کاهش می یابد، در نتیجه جریان اسلامپ افزایش یافته و ویسکوزیته ترکیب کاهش می یابد.

حجم خمیر یکی از مهمترین عوامل کنترل در تعیین نسبت ترکیب SCC می باشد. این در حقیقت ساده این است، هر چقدر که حجم خمیر بالاتر باشد، به احتمال بیشتر بتن خمیر را حرکت می دهد (و شانس کمتر برای انسداد و تفکیک وجود دارد) چالش واقعی، ایجاد تعادل میان توسعه و ویژگی های تازه و الزامات ویژگی سخت شوندگی می باشد.

 

رئولوژی خمیر

 

کنترل رئولوژی خمیر پیچیده تر از کنترل حجم خمیر است. ابزارهای متعدد در کنترل رئولوژی خمیر مانند آب، کاهش دهنده آب با طیف بالا (HRWRs)، ویسکوزیتی اصلاح مواد افزودنی (VMAs)، سیمان، مواد سیمانی مکمل (SCMs) و سایر پودرهای ریز که در اختیار متخصص می باشد. تمام متخصصین بتن از نسبت آب به سیمان و نسبت مواد سیمانی با آب آگاهی دارند که هر کدام از طریق جرم محاسبه شده و برای کنترل ویژگی هایی از قبیل مقاومت فشاری و پایداری مورد استفاده قرار می گیرند. اکثر متخصصین بتنی می دانند که با فرض برابری تمام موارد دیگر زمانی که نسبت آب به سیمان کاهش می یابد، بتن چسبنده شده و یا ویسکوزیته آن بالا می رود. اکثر پودرهای به کار رفته برای تعیین نسبت SCC از وزن مخصوص متفاوت برخوردارند که همین امر محاسبه کل جرم را برای مقایسه ترکیبات و کنترل رئولوژی پندان اثربخش نمی داند. نسبتی که برای کنترل رئولوژی خمیر مفید است نسبت آب به پودر به لحاظ حجم (wv/pv) است. روش تعیین نسبت اصلی که توسط او کامورا طراحی شده است یک نسبت WV/pv بین 9/0 و 0/1 را پیشنهاد می کند که با نسبت آب به سیمان بین 29/0 و 32/0 مشابه است و صرفاً سیمان پرتلند در آن استفاده می شود.

براساس تجربه عملی این ترکیبات نسبتاً چسبنده بوده به این معنی که ویسکوزیته آنها بسیار بالا می باشد.

ترکیبات شیمیایی از قبیل HRWRs و VMAs برای کنترل رئولوژی خمیر و در نتیجه رئولوژی بتن، بدون نیاز به تنظیم نسبت های ترکیب، مورد استفاده قرار می گیرند. برای مثال، HRWRs برای افزایش سیالیت بدون افزودن آب به کار می روند که می توانند ویسکوزیته را کاهش دهند. VAMs برای افزایش ویسکوزیته به کار می رود درحالی که نه آب را کاهش داده و نه پودر را افزایش می دهد.

علاوه بر تنظیم میزان آب یا پودر و در نتیجه با دستکاری نسبت wv/pv یا به کار بردن افزودنی ها، ترکیب پودر می تواند برای نفوذ و تاثیر بر رئولوزی خمیر تقسیم شود.

 

ترکیب پودر

 

ترکیب پودر بر روی تمام بخش های ترکیب SCC تاثیر می گذارند، از ویژگی های تازه، رئولوژی، سفتی یا گیرش تا ویژگی های سخت شدگی، همچنین کارآمدی و مقدار مورد نیاز HRWR و انتخاب ترکیب مناسب پودر نیازمند دانش و شناخت مصالح محلی و سپس تصمیم گیری در مورد نسبت ترکیب آن مصالح است. انتخاب پودر و نسبت های آنها از طریق تاثیر آنها بر عملکرد، قابلیت دسترسی آنها، هزینه و توانایی کارخانجات تولیدی برای جابجایی پودرهای چندگانه تعیین می شود.

نقطه شروع برای ترکیب، پودر سیمان پرتلند است. سیمان زمانی انتخاب می شود که تعیین نسبت SCC دارای تاثیر بیشتری بر رئولوژی خمیر است، چرا که سیمان می تواند نیاز به آب داشته و واکنش به شیمی HRWR در آن وجود دارد. برای مثال اگر یک ترکیب ابتدا با یک سیمان خاص و یک سیمان جدید با یک میزان آب مورد نیاز کمتر، نسبت بندی شود و سپس با مواد اصلی جایگزین شود، این فرصت وجود دارد که یا میزان آب یا مقدار HRWR تغییر کند. با این وجود این تغییر می تواند منجر به تغییر رئولوژی خمیر گردد، به خصوص اگر میزان آب کاهش یافته باشد. به خاطر قابلیت تغییر در ویزگی درون پودرها و نیز بین انواع متفاوت پودرها، هیچ توصیف واحدی نمی تواند بیان کننده تاثیر یک پودر بر ویژگی SCC تازه باشد. اگر یک پودر برای جایگزینی سیمان به کار رود، تاثیر آن همیشه متناسب با ویزگی های آن ترکیب سیمان ویژه است. وقتی که ویزگی های سیمان تغییر می کند میزان نسبی تاثیر دیگر پودرها نیز تغییر می کند. بنابراین وقتی که یک پودر جدید در نظر گرفته می شود باید مورد آزمایش قرار گیرد. گزینش خمیر مناسب و ترکیب پودر می تواند عمیق ترین بخش تعیین نسبت یک ترکیب SCC باشد (باتوجه به آزمون موجود و این فرضیه که تولید کننده پودرهای متعدد را در اختیار دارد).

 

روش های تعیین نسبت SCC

بیش از پانزده روش تعیین نسبت ترکیب SCC در سراسر دنیا طراحی شده اند. از این تعداد تنها دو روش شامل مقاومت تراکمی (به عنوان بخشی از معیارهای موجود) می شود در حالی که اکثر روش ها برای دستیابی به ویژگی های SCC تازه به تعیین نسبت می پردازد. تکنیک هایی که بر ویژگی های تازه تمرکز دارند به دو گروه مهم تقسیم بندی می شوند:

  1. آنهایی که براساس میزان محاسبه از طریق آزمون و نیز ارزیابی مواد خام مورد استفاده، به دست می آیند.
  2. آنهایی که مبتنی بر انتخاب مصالح، پودر و مقادیر آب از یک سری جداول کلی هستند. با وجود این فرآیند، تمام روش ها نیازمند آزمون نسبت های انتخاب شده هستند. هیچ روشی وجود ندارد که ترکیب مطلوب را صرفاً از طریق بررسی ویزگی های مصالح ارائه کند. با این وجود متدولوژی ها، تعداد آزمایش های ضروری را کاهش می دهند. هدف درک و شناخت منطق موجود در تعیین نسبت ترکیبات SCC می باشد.

روش طراحی ترکیب منطقی

در روش طراحی ترکیب منطقی که توسط او کامورا و اوزاوا ارائه شده است 4 مرحله ذیل ارائه می شود:

  1. میزان سنگدانه های درشت که در 50% حجم جامد تثبیت می شود.
  2. میزان سنگدانه های ریز در 40% حجم ملات ثابت است.
  3. نسبت wv/pv بین 9/0 و 0/1 قرار دارد (بسته به ویژگی های پودر).
  4. مقدار روانسازها و نسبت wv/pv نهایی به گونه ای تعیین می شود که قابلیت خود تراکمی را ایجاد می کند.

اندازه گیری های بتن

روش CBI

در روش CBI که توسط بیلبرگ و دیگران ارائه شده است، سه مرحله ذیل مدنظر قرار می گیرند:

  1. مینیمم حجم خمیر را مطابق با ویژگی های سنگدانه ای، معیارهای ویژگی سخت شدگی، معیارهای توانایی عبور (بیان دقیق جزئیات سازه ای) محاسبه کنید. محاسبات مربوط به تعیین میزان سنگدانه درشت براساس رابطه بین MSA و کوچکترین شکاف که از طریق آن بتن باید جریان یابد انجام می شود. یک متدولوژی جهت دستیابی به میزان حجم خمیر مورد نیاز، از طریق بررسی اطلاعات فوق و نیز فضای خالی بین اسکلت سنگدانه ها ارائه شده است.
  2. ویژگی های بتن سخت شده و تازه را آزمون نموده و آن را کنترل کنید.

روش ICAR

این روش از سوی مرکز بین المللی تحقیقات مصالح طرح شده و شامل سه مرحله زیر می باشد:

  1. سنگدانه ها و MSA به کار رفته را انتخاب کنید و آنها را برای تراکم، بسته بندی، شکل و براساس گوشه دار بودن، ارزیابی کنید و میزان فضای خالی برای انتخاب ترکیبات مختلف را تعیین کنید.
  2. تعیین حجم مناسب خمیر برای پر کردن مطلوب و قابلیت عبور براساس میزان فضای خالی، ارزیابی شکل و گوشه دار بودن از مرحله 1 و ضروریات قدرتمندی.
  3. تعیین ترکیبات خمیر براساس الزامات ویژگی تازه و سخت شدگی

روش ACI 237

ACI 237R-07 دستورالعمل های ذیل را برای تعیین نسبت ترکیبات SCC ارائه می کند که یکی از ویژگی های بتن scc به شمار می رود. (تعدادی از جداول حاوی این مراحل هستند، اما در اینجا ارائه نمی شوند):

  1. تعیین الزامات جریان اسلامپ مناسب براساس کاربرد
  2. تعیین ماکزیمم اندازه مناسب سنگدانه های درشت و میزان سنگدانه های درشت براساس الزامات توانایی عبور این روش میزان سنگدانه های درشت با 50% حجم مطلق ترکیب را پیشنهاد می کند. این براساس طراحی یک ترکیب منطقی است که قبلاً اشاره شد.
  3. برآورد میزان سیمان / پودر مورد نیاز براساس الزام جریان اسلامپ
  4. محاسبه حجم ملات و خمیر
  5. انتخاب افزودنی های مناسب برای استفاده
  6. بسته بندی مخلوط های آزمایشی
  7. آزمون ترکیبات مربوط به ویژگی های مورد نیاز سخت شدگی و ویژگی تازه
  8. براساس نتایج، نسبت ها را تنظیم کنید، مجدداً بسته بندی کرده و آزمون را انجام دهید.

باید با هر روش مربوط به تعیین نسبت SCC، به ویژگی های سخت شدگی توجه و دستورالعمل هایی را برای دستیابی به ویژگی های تازه مورد نیاز ارائه داد. در بعضی از موارد، توانایی عبور اهمیت دارد و از این رو انتخاب اندازه سنگدانه های درشت و حجم آنها اولین اولویت خواهد بود. اگر توانایی عبور اهمیت نداشته باشد، سایر الزامات عملکرد از قبیل اهمیت پرداخت سطحی ممکن است بر فرآیند غالب شوند و این الزامات باید از ابتدا مشخص باشند.

اندازه ماکزیمم سنگدانه ها را انتخاب کنید

این مورد اساساً درصدد تضمین میزان قابلیت عبور کافی می باشد، گرچه سنگدانه های بزرگتر دارای یک گرایش بیشتر برای تفکیک یا تجزیه هستند. این گزینه می تواند اساس تجربه قبلی با اجزاء بتن ریزی شده، صورت گیرد، اگر چنین تجربه ای وجود نداشته بادشد، پیشنهادات ACI در ذیل برای ماکزیمم اندازه اسمی محدودیت ها، می توانند به کار گرفته شوند:

  • برای قالب ها، S 1/5 باریک ترین بعد بین اضلاع
  • برای دال ها، S 1/3 عمق
  • برای میلگردهای تقویت مجزا، دسته میلگردها، یا کابل های پیش تنیده، S 1/4 مینیمم فضای مشخص بین آنها.

برای تضمین قابلیت عبور، مولف پیشنهاد می کند که چنانچه هیچ تجربه قبلی وجود نداشته باشد و قابلیت عبور یک ویزگی عملکردی مهم تلقی شود، این تا سطح 1/2 مینیمم فاصله آزاد کاهش می یابد، و باید شامل فاصله آزاد بین آرماتور و اطراف قالب ها گردد.

انتخاب ترکیب

نسبت مناسب سنگدانه باعث به حداقل رسانی فضای خالی اسکلت سنگدانه های ترکیبی می شود. این ترکیب می تواند از طریق اندازه گیری فضای خالی سنگدانه های ترکیبی یا تناسب کل درجه بندی ترکیبی با یک منحنی درجه بندی ایده آل از قبیل قدرت منحنی 45/0، منحنی بولومی یا سایر منحنی ها تعیین شود. الزامات توانایی عبور نیز بر ترکیب سنگدانه های کار رفته تاثیر بگذارد. روش CBI حاوی یک معادله برای محاسبه محتوای سنگدانه های درشت براساس اندازه سنگدانه ها می باشد.

انتخاب یک میزان سنگدانه های درشت

در این روش ممکن است زمانی در اولویت باشد که ویژگی های سخت شدگی معین از قبیل مدول الاستیسیته مورد توجه قرار گیرد. جدول 1 زیر به نمایش حجم مصالح دانه درشت براساس اندازه سنگدانه (حاصل از آنالیز دومونی) می پردازد. یک محدوده کامل از حجم مصالح دانه درشت عملاً مورد استفاده قرار گرفته اند. حجم سنگدانه ها بیشتر است و این محدوده برای MSA بزرگتر است.

محدوده %

حد فاصل %

میانگین %

میلی متر

9/34- 3/28

9/30

0/31

˂ 20

3/42- 28

7/31

3/32

˃ 20

جدول 1 حجم مصالح دانه درشت در هر مترمکعب در برابر MSA

تعیین کمیت خمیر مورد نیاز

میزان فضای خالی اسکلت سنگدانه ها، مساحت، شکل ذره سنگدانه و هدف جریان اسلامپ تماماً بر حجم مورد نیاز خمیر تاثیر می گذارند. جدول 2 به ارائه اطلاعات از آنالیزهای مطالعه موردی توسط مولف و نیز دومونی می پردازد که شامل حجم خمیر محاسبه شده از آنالیز توسط مولف می باشد. در بعضی موارد فاقد محتویات هوا و بعضی اوقات شامل محتویات هوا بوده است. در این موارد مولف یک محتوی هوای ایجاد شده 2 درصد را در نظر می گیرد.

در مقایسه میان خمیر دارای هوا و بدون هوا، حجم خمیر دارای هوا ماکزیمم مقادیر موجود به میزان قابل توجهی افزایش نمی یابد. با این وجود مینیمم مقادیر تا حد 6 درصد افزایش یافته و کل محدوده را از 8 تا 12 درصد کاهش می دهد.

همان طور که قبلاً بررسی نمودیم، حجم خمیر مورد نیاز با برخی عوامل در نوسان خواهد بود، از جمله فضای خالی سنگدانه ها. فضای خالی در اثر تراکم بسته بندی ایجاد می شود که تحت تاثیر از ماکزیمم اندازه سنگدانه ها می باشد. در آنالیز مطالعه موردی دومونی، محتویان خمیر میانی بالاتر برای ترکیباتی که از سنگدانه های ماکزیمم دانه درشت با سایز کوچک تری استفاده می کنند نیز مشاهده شده است. نیاز به مصرف خمیر نیز تحت تاثیر شکل ذره قرار دارد. در همان آنالیز ضرورت مصرف بالاتر خمیر با سنگدانه های خرد شده مشاهده شد. این نتایج غیر منتظره بود و مثال دیگری از نحوه تشابه قوانین حساب سرانگشتی برای ویژگی های ترکیب SCC با قوانین سرانگشتی بتن معمولی ارائه شده است.

به محض افزایش جریان اسلامپ، کاربرد محتویات بالاتر خمیر توصیه می شود: ACI 237 این روند را از طریق میزان پودر بالاتر برای اهداف جریان اسلامپ بالاتر پیشنهاد می کند. اگر ترکیب SCC با خمیر ناکافی نسبت بندی شود گرایش متخصص به سمت افزایش در HRWR خواهد بود. با این وجود، این می تواند خمیر را پراکنده نموده و منجر به آب دهی و ناپایداری گردد.

محدوده %

حد فاصل %

حد وسط %

 

43- 35

38

39

Author's with air

41- 29

34

35

Author's with air

42- 30

35

35

Domone's

جدول 2 به داده های حجم خمیر براساس آنالیز مطالعه موردی

انتخاب محتویات آب به عنوان اول در تجزیه و تحلیل مطالعات موردی دامنه محتویات آب از 148 تا 200 کیلوگرم در هر متر مکعب و میانگین 174 کیلوگرم در هر متر مکعب می باشد. به عنوان یک جزء اولیه خمیر، محتوی آب دارای تاثیر چشمگیری بر خمیر و در نتیجه بر ویسکوزیته بتن می باشد. ویسکوزیته یک مخلوط SCC می تواند بر مزایای حاصل در یک پروژه مشخص تاثیر بگذارد. پس در بعضی از موارد، محتوی آب می تواند برای دستیابی به یک ویسکوزیته و در نتیجه تاثیر گذاری بر مزایای مطلوب و معین انتخاب شود. برای اجزاء مسلح فشرده نیاز به میزان آب کمتر است. این منطقی است، زیرا ویسکوزیته خمیر برای اجتناب از انسداد سنگدانه های درشت اهمیت دارد. ضمناً این امکان وجود دارد که این روند تحت تاثیر الزامات مقاومت تراکمی پروژه قرار داشته باشد. زمانی که پرداخت سطحی اهمیت داشته باشد، محتوی آب به سمت بخش انتهای فوقانی این محدوده متمایل می شود که در این زمان کاهش ویسکوزیته خمیر (برای دستیابی به سطح یکنواخت، حباب سطحی) کاملاً منطقی است. زمانی که دسترسی محدود و لزوم کاربرد اشکال پیچیده اهمیت داشته باشند، محتویات آب به صورت یکنواخت توزیع می شوند.

انتخاب نسبت W/C و محتویات هوا، براساس مقاومت فشاری و الزامات قابلیت پایداری

در اکثر موارد، مقاومت فشاری یک ترکیب SCC بالاتر از مقاومت یک ترکیب اسلامپ معمولی با همان نسبت آب به سیمان می باشد با این وجود، نقطه شروع می تواند براساس تجربه قبلی با مصالح موجود انتخاب شود.

تعیین ترکیب پودر نهایی و کنترل نسبت wv/pv را براساس الزام عملکرد ویسکوزیته و سیالیت

به صورت فرضی، حجم خمیر، محتوی آب و ماکزیمم نسبت آب به سیمان مورد نیاز برای پروژه از قبل تعیین شده اند. از این اطلاعات، حجم آب، و سیمان می توانند تعیین شوند. اگر سایر پودرها در دسترس باشند، این مصالح باید در مقادیر مورد نیاز برای دستیابی به حجم خمیر نهایی افزوده گردد. اگر پودر دیگری در دسترس نباشد، باید محتویات سیمان و آب افزایش یابد (با همان نسبت). برای رسیدن به حجم خمیر مطلوب، ویسکوزیته یک ترکیب بتن می تواند از طریق تنظیم حجم یا ویسکوزیته خمیر تغییر یابد.. حجم خمیر پایین تر دارای نسبت های بالاتر wv/pu می باشد (به صورت فرضی در تلاش برای حفظ یک ویسکوزیته منطقی ترکیب بتن) در تلاش برای حفظ ویسکوزیته پایین تر ترکیب، در صورت امکان به منظور کنترل هزینه ها روش ترجیحی افزایش نسبت wv/pv به جای حجم کل خمیر توصیه می شود، اما بایستی در برابر الزامات ویژگی سخت شدگی متعادل گردد.

تعیین نسبت ترکیبات SCC تفاوت زیادی با تعیین نسبت ترکیبات اسلامپ معمولی ندارد. در اکثر موارد اساسی، این خمیر (شامل هوا) مخلوط است که جریان و ویزگی پایداری مخلوط را کنترل می کند. خمیر همچنین تاثیر سنگینی بر ویزگی های سخت شدگی و هزینه مخلوط دارد. در کنترل خمیر، حجم و یا ترکیب خمیر باید اطلاح گردد، بهینه سازی اسکلت سنگدانه ها (از شکل ذرات گرفته تا توزیع اندازه ذرات و چگالی بسته بندی) به حفظ مقادیر محتویات خمیر و کاهش نسبی هزینه ها کمک خواهد کرد.

تعداد متعددی از رویه های نسبت بندی SCC طراحی شده و دستورالعمل خوبی برای انتخاب نسبت های اولیه ارائه کرده اند.

همانند تمام روش های نسبت بندی مخلوط، خواه برای بتن اسلامپ معمولی یا برای SCC، آزمون و ارزیابی نسبت های انتخاب شده ضروری می باشد. لذا در صورت لزوم، تنظیم در نسبت ها باید به منظور دستیابی به عملکرد نهایی مطلوب، انجام شود.

جهت اطلاعات تکمیلی درباره محصولات و هرآنچه درمورد بتن لازم دارید که بدانید، می توانید به وبسایت www.clinicbeton.ir مراجعه نمایید.

  • مسعود اسماعیلی
  • ۰
  • ۰

زمانی که مجموعه ای از اهداف عملکرد و نسبت های مخلوط بر روی کاغذ آورده می شود، مرحله بعدی شناسایی مخلوط جهت تامین عملکرد موفق در طول فرآیند تولید است. دستورالعمل های موقتی مطرح شده از سوی انستیتو بتن پیش تنیده / پیش ساخته سه مرحله در فرآیند شناسایی مخلوط را معرفی می کند. نخست بچینگ های (Batch) کوچک کنترل شده در آزمایشگاه مورد آزمون قرار می گیرند، دوم مخلوط انتخاب شده در تولید، آزمایش می شود که شامل کاربرد بچینگ، مخلوط و تجهیزات بتن ریزی می شود و در نهایت یک طرح کنترل تضمین کیفیت برای ویزگی های سخت شدگی و تازه، ایجاد می شود.

شناسایی آزمایشگاهی

همیشه تعداد معینی از آزمایش ها به دنبال توسعه یک ترکیب جدید هستند، در فرآیند شناسایی، ویژگی های سخت شدگی و تازه مهم، آزمایش می شوند. جهت تضمین بالاترین سطح کنترل، توصیه می شود در صورت امکان بچینگ های آزمایشگاهی کوچک در ابتدا مورد استفاده قرار گیرد. در این روش تاثیرات تنظیمات کنترل شده و خاص آموخته می شوند. زمان اجرای آزمایش های لابراتوری بتن، رویه های خوب و تمام استانداردهای مناسب، مانند آنچه که در ASTM وجود دارد، باید مدنظر قرار گیرند.

فاز یک فرآیند شناسایی مخلوط

تصویر 1 فاز یک فرآیند شناسایی مخلوط

تصویر 1 به نمایش فلوچارت (نمودار جریان) برای بخش اول فرآیند شناسایی می پردازد. مخلوط ایجاد شده برای ویژگی های تازه هدف آزمایش می شود. اگر این ویژگی ها به دست نیایند، تنظیماتی در نسبت های مخلوط بتن اعمال می شوند. اگر اهداف تازه به دست آیند، سپس آزمون مقاومت مخلوط و ویژگی های سخت شدگی انجام می شود. این روند ادامه می یابد تا این که به ویزگی های سخت شدگی و تازه مناسب دست یابیم.

آزمون نسبت های اولیه

برنامه آزمون آزمایشگاهی اولیه به موقعیت وابسته بوده و می تواند به صورت محدود و گسترده باشد. در اکثر موارد، متخصصین بتن تنها به قصد تولید مخلوط که مورد استفاده قرار می گیرد به این مرحله نزدیک می شوند که گاهی منتهی به یک باریک بینی و نگرش محدود به این فرآیند می شود و در نهایت منجر به آزمایش تنها یک مخلوط خواهد شد، تنظیمات صورت می گیرد و مخلوط مجدداً آزمایش می شود. این متدولوژی اشتباه نیست اما نه کارآمد بوده و نه منجر به شناخت و یادگیری تنظیمات چندگانه و فعل و انفعالات آنها می شود. طرح آزمایشی کارآمد به خودی خود یک نظم و انضباط خاص داشته و کتاب های متعددی می توانند به بیان این موضوع بپردازند. آزمایشات طراحی شده آماری می تواند به صورت همزمان یک مخلوط بتن SCC خاص را ارائه نموده و فعل و انفعالات بین متغیرهای نسبت بندی مخلوط را شفاف کند. خلق یک مخلوط و شناخت فعل و انفعالات برای دوره بلند مدت و کوتاه مدت اهمیت دارد. نتایج موجود در زمان صرف شده برای رفع عیب در مراحل بعدی مطرح می شود. اگر متخصص دارای مهارت طراحی آزمایشی نباشد، بسته های نرم افزاری بازاری موجود یا خدمات موجود از طریق عرضه کنندگان اطلاعات می توانند به توسعه یا طراحی یک آزمایش SCC (در صورت مطلوب بودن) کمک کنند.

آزمون آزمایشگاهی، تفسیر نتایج و تنظیم نسبت های اختلاط

آزمون و ارائه داده ها اغلب بخش آسان فعالیت ما را شکل می دهد. بخش اصلی این فرآیند تفسیر داده ها و ایجاد تنظیمات می باشد. زمانی که تنظیم نسبت های مخلوط SCC مطرح می شود، یک ارزیابی کیفی از مخلوط، اغلب به اندازه هر ارزیابی آزمون دیگری اهمیت دارد. این به خصوص در مورد ناپایداری و تفکیک مصداق دارد. زیر مجموعه های ذیل دستورالعمل مهمی را برای تنظیم نسبت ها ارائه داده تا قابلیت پر کردن و سیالیت، توانایی عبور، پایداری و مقاومت براساس آزمون آزمایشگاهی را بهبود بخشند. لازم به ذکر است که در بعضی موارد تنظیمات نسبت بندی ممکن است بر بیش از یک ویزگی تاثیر بگذارند.

سیالیت / قابلیت پر کردن

در کل این ویژگی از طریق آزمون جریان اسلامپ اندازه گیری می شود.

  • اگر جریان اسلامپ بسیار بالا باشد باید مقدار آب را کاهش دهید، اگر مقدار آب کاهش یابد، پس حجم خمیر و نسبت آب به پودر از لحاظ حجمی (wv/pv) کاهش می یابد که هر دوی آنها ویسکوزیته ترکیب را افزایش می دهد و این نیز نیازمند افزایش میزان سنگدانه ها برای جبران حجم آب از دست رفته است. کاهش در حجم خمیر می تواند تاثیر منفی بر قابلیت عبور داشته باشد.
  • مقدار کاهش دهنده میزان آب با طیف بالا (HRWR) را کاهش دهید. این از مزیت کاهش سیالیت برخوردار است، زیرا به یک تنظیم تعادل ساز حجم در نسبت های مخلوط نیاز ندارد.
  • برای کمک به تصمیم گیری در مورد انتخاب نوع مرحله، باید توجه داشت که آیا این ترکیب علایم تجزیه و ناپایداری را نشان می دهد یا خیر. اگر ترکیب علایم ناپایداری در این جریان، اسلامپ بالا را نشان ندهد، نشانه خوبی بوده و مقدار HRWR باید کاهش یابد. مجموعه زیر در مورد تنظیم و اصلاح پایداری و مقاومت در برابر تفکیک به بحث و بررسی این نکته می پردازد که چگونه می توان سطح جریان اسلامپ را بررسی نمود، چنانچه مخلوط علایم ناپایداری را نشان می دهد.
  • اگر جریان اسلامپ بسیار پایین باشد باید میزان آب را افزایش دهید تا جایی که نسبت آب به سیمان فراتر از محدوده مشخص افزایش نیابد. افزایش میزان آب باعث افزایش حجم خمیر و نسبت (wv/pv) می شود. بدینوسیله هم ویسکوزیته مخلوط و هم سیالیت افزایش می یابد. این نوع تنظیم باید در مراحل کوچک اعمال گردد طوری که موجب ناپایداری مخلوط نشود.

افزایش مقدار HRWR: در صورتی که جریان اسلامپ به صورت نظام مند با افزایش مقدار HRWR و بدون تفکیک افزایش یابد، نسبت های مخلوط به صورت منطقی متعادل می شود. اگر در طول فرآیند، جریان اسلامپ افزایش نیابد، می تواند ناشی از یک یا چند مورد زیر باشد:

  • ترکیب دارای یک حجم خمیر ناکافی می باشد.
  • سیمان به کار رفته به سرعت سفت می شود.
  • نسبت آب به سیمان آنقدر پایین است که مقدار اشباع پراکنده، افزایش یافته است. بنابراین اگر این مورد اتفاق بیافتد، تنظیم نسبت مخلوط ممکن است ضروری باشد.

افزایش کل حجم خمیر: اگر حجم خمیر بسیار پایین باشد و HRWR را اضافه نماییم، می تواند به صورت نظام مند باعث تفکیک شود که از طریق آب دهی و بی رنگ شدن سطح بتن قابل تشخیص است. زمانی که حجم خمیر ناکافی باشد، از طریق وجود غلظت در سنگدانه ها در مرکز لایه ای جریان اسلامپ (در انجام آزمون جریان اسلامپ) مشخص می شود.

مخلوط بتن

توانایی عبور

 

ASTM C 1621 به ارزیابی توانایی عبور SCC از طریق تعیین تفاوت بی جریان اسلامپ با حلقه و یا بدون حلقه J می پردازد. بعضی از استانداردهای اروپایی تفاوت ارتفاع لایه ای درون حلقه در برابر بیرون حلقه را اندازه گیری می کنند.

این تفاوت یا اختلاف ارتفاع ارزیابی می کند که آیا اتصال معنادار سنگدانه ای وجود دارد یا خیر و آیا در داخل حلقه ساخته می شود؟ با استفاده از متدولوژی پیشنهادی از سوی ASTM C 1621، اگر توانایی عبور کافی نباشد با توجه به این که جریان اسلامپ بدون حلقه 50 میلی متر یا بیشتر (2 اینچ) است، بیشتر از جریان اسلامپ حلقه J، باید مجدداً ارزیابی در خصوص چگونگی انسداد سنگدانه ها صورت گیرد.

 

پایداری و مقاومت در برابر تجزیه

موارد ذیل مربوط به مراحل تنظیم پایداری براساس آزمون آب دهی و آزمون تفکیک ستون ارائه شده است:

  • بررسی انباشته شدن آب تراوش شده به میزان بسیار بالا

    افزودن یا افزایش مقدار VMA

    کاهش نسبت wv/pv از طریق کاهش آب یا افزایش پودر

    در صورتی که حجم خمیر نسبتاً پایین باشد، باید میزان خمیر را افزایش داد. به خاطر داشته باشید که بطور کلی، حجم خمیر در ابتدای دستیابی به ویژگی های تازه مخلوط SCC متغیر است.

    افزایش میزان سنگدانه های ریز بطوری که میزان اضافه سنگدانه های ریز محسوس باشد (mµ 300 ˂) 

  • اگر آب دهی اضافی به صورت شیمیایی از طریق مقدار HRWR صورت گیرد، لازم است میزان HRWR را پایین آورده و حجم خمیر را افزایش دهید. 
  • نشست بیش از حد سنگدانه های درشت

    در صورت امکان براساس الزامات کاربردی، جریان اسلامپ را با کاهش مقدار HRWR کم کنید.

    ویسکوزیته مخلوط را با کاهش wv/pv یا افزایش مقدار VMA، افزایش دهید.

    چنانچه همراه با آب دهی شیمیایی باشد، پس حجم خمیر را افزایش دهید.

    در صورت امکان، ماکزیمم اندازه سنگدانه ها را کاهش دهید، توجه داشته باشید که اگر این تنظیم صورت گیرد، ممکن است افزایش در حجم خمیر الزامی باشد.

آزمون قدرتمندی

 

زمانی که یک مخلوط یا مجموعه ای از مخلوط ها حاوی ویژگی های سخت شدگی و تازه مناسب، ساخته شده باشند، باید قدرتمندی این مخلوط ها مشخص شود. قدرتمندی مخلوط SCC به معنی عدم حساسیت این مخلوط در مقابل نوسان سیالیت، بچینگ درست و یا ویژگی های مواد خام از قبیل میزان رطوبت و توزیع اندازه ذرات می باشد که می تواند منجر به تغییراتی در ویژگی تازگی ترکیب SCC گردد. یک ترکیب قوی ترکیبی است که می تواند به راحتی تولید شود و پیوسته به ویژگی مورد نظر (به لحاظ تازگی) بدون حضور مستمر تولید کننده یا پیمانکار در محل پروژه دست یابد.

بدین ترتیب مشخص شد که با هر افزایش سطح جریان اسلامپ، ترکیبات به تغییرات حساس بوده و مقاومت بتن کاهش می یابد. هدف در آزمون قدرتمندی، یافتن نقطه ای است که در آن یک مخلوط برای مدت طولانی عملکرد قابل قبول را برحسب پایداری و سیالیت و توانایی عبور به نمایش نمی گذارد. بنابراین باید این مرحله را با هدف خرد کردن ترکیب شروع کرد، طوری که بدانیم تا چه حد می تواند در مقابل فشار پایداری خود را حفظ کند.

اولین مرحله در آزمون قدرتمندی، تعیین رابطه بین سیالیت و پایداری برای مصالح و ویژگی های انتخاب شده است. هدف این آزمون، اشاره به سطح ناپایداری مخلوط است. طرح زیر به ارائه مراحل پیشنهادی برای ارزیابی این رابطه می پردازد. جریان اسلامپ می تواند بنابر صلاحدید متخصص تنظیم شود. به خاطر این که رابطه بین جریان اسلامپ و سایر داده های آزمون همیشه خطی نیست، مینیمم سه سطح جریان اسلامپ توصیه می شود. هر مخلوط ترسیم شده از نسبت های برابر (هنگام تنظیم مقدار HRWR) استفاده می کند.

 

ترکیبات:

  1. تنظیم مقدار HRWR برای دستیابی به جریان اسلامپ 500 تا 550 میلی متر
  2. تنظیم مقدار HRWR برای دستیابی به جریان اسلامپ 600 تا 650 میلی متر 
  3. تنظیم مقدار HRWR برای دستیابی به جریان اسلامپ 700 تا 750 میلی متر

آزمون ها:

 

جریان اسلامپ                            زمان T50

تفکیک ستون                             آب دهی

شاخص پایداری چشمی (VSI)        میزان آب

 

 

توانایی عبور از حلقه J، این آزمون صرفاً زمانی ضروری است که توانایی عبور یک ویژگی ضروری باشد.

زمان تکمیل این آزمون، تعدادی از طرح های اسکاتر (در نمایش رابطه بین جریان اسلامپ، T50 و سایر داده های آزمون) می توانند جهت استفاده ترسیم شوند. مانند آنچه که در تصویر  2نشان داده شده است، هر نقطه از داده ها می تواند با نتیجه آزمون (که شامل هر آزمون دیگری مانند درصد تفکیک ستون، VSI، جریان حلقه J با سایر موارد می باشد) علامت گذاری شود. این تصور به ترسیم داده های فرضی برای زمان T50 در برابر جریان اسلامپ و درصد تفکیک ستون برای مجموعه ترکیبات فوق می پردازد.

 

طرح داده ای برای آزمون قدرتمندی

تصویر 2 طرح داده ای برای آزمون قدرتمندی

 

در این مثال متخصص می تواند رابطه T50 جریان اسلامپ و محدوده های کنترل کیفیت را براساس محدوده تفکیک مشخص شده معرفی کند، اگر محدوده تفکیک 10 یا 15 درصد باشد، پارامترهای متفاوت برای دو آزمون دیگر در نظر گرفته می شود.

جنبه دیگر قدرتمندی، واکنش یک مخلوط به خطاهای بچینگ است. این بخش از طریق ایجاد تغییرات هدفمند در اوزان پیمانه یک ترکیب مشخص و نیز اندازه گیری واکنش، ارزیابی می شود. ASTM C 94 شاخص استاندارد بتن آماده است که می تواند برای اعمال تغییرات مناسب در وزن بچینگ ها استفاده شود. این استاندارد دستورالعمل مربوط به دقت بچینگ مصالح برای کارخانجات و تولید بتن آماده را ارائه می دهد. برای مثال، بخش 9 از ASTM C 94 اصول زیر در خصوص بچینگ دقیق با اندازه نرمال هر پیمانه را ارائه می کند: پودرها (ترکیبات سیمان و مواد معدنی) ±1% مصالح ±2% و کل آب ±3% بالا و پایین کردن پودر و یا محتویات آب می تواند تاثیر قابل توجهی را بر سیالیت و پایداری مخلوط داشته باشد. با هدف یافتن نقطه شکست یک مخلوط توصیه شده که قدرتمندی در نقاطی بیرون از این محدوده دقت ارزیابی شود. حداقل توصیه مولف، کاهش بیشتر در نقطه مینیمم پودر (%2- بیشتر از %1) همچنین افزایش ماکزیمم نقاط آب (%6+ بیشتر از %3+) می باشد. نتایج آزمون براساس این محدوده های افزایش یافته، کاملاً فضای عملکرد قدرتمندی را مشخص کرده و شناخت بیشتر محدوده های ترکیب، مدنظر قرار می گیرد. جدول1 به ارائه گروهی از نسبت ها و مینیمم و ماکزیمم محدوده های هر ماده (مصالح) می پردازد.

کنترل رطوبت آزاد سنگدانه ها اغلب به عنوان یکی از حوزه های اساسی و مهم برای کنترل در طی تولید SCC مطرح بوده است. آب پیش بینی نشده می تواند در سطح قابل توجهی برای تمامی این ویژگی های SCC تازه تاثیر بگذارد.

 

حداکثر

(kg)

حداقل

(kg)

حداکثر

حداقل

مثال تناسب

(kg/m3)

 

455

441

+1%

-2%

450

ترکیب آب معدن و سیمان

867

833

+%2

-2%

850

سنگدانه درشت

816

784

+%2

-2%

800

سنگدانه ریز

196

179

+%6

-3%

185

آب

جدول 1 مینیمم مصالح نمونه و ماکزیمم محدوده آزمون قدرتمندی

 

بنابراین برخورداری از درک روشن در رابطه با قدرتمندی آب مخلوط برای تولید کننده بتن اهمیت فراوانی دارد. جدول 2 به نمایش طرح آزمون قدرتمندی نمونه جهت ارزیابی کاهش پودر و کاهش و افزایش آب می پردازد. میزان تنظیم در بخش های سایه دار ارائه می شوند. در این برنامه تمام آزمون های ویژگی تازه و استاندارد اجرا شده و قدرتمندی مخلوط اندازه گیری می شود. کل مقادیر افزودنی ها براساس ترکیب مرجع (به جز HRWR) ثابت هستند که برای دستیابی به جریان اسلامپ هدف تنظیم می شوند. یک مخلوط در صورتی قدرتمند است که تغییرات وزن بچینگ منجر به تغییرات کوچک اما قابل قبول در عملکرد (اندازه گیری شده از طریق روش های آزمون انتخاب شده) شود.

با این وجود، متدولوزی فوق صرفاً تاثیر یک فاکتور را در یک زمان نشان می دهد. باید پذیرفت که تولید بتن واقعی دینامیک تر از این تولید است. در طول تولید یک بچینگ واحد بتن، این امکان وجود دارد که میزان توزین شده بیش از یک ماده می تواند باعث نوسان بالاتر یا پایین تری از نسبت های هدف شود، درحالی که هنوز درون بازه های بچینگ مشخص شده قرار دارد. این امکان وجود دارد که به ارزیابی و مدل سازی این حالت پیچیده تر بپردازیم.

 

water

robustness

(%6+)

water

robustness

(%3+)

water

robustness

(%3-)

پودر خوب

عملکرد

(%2-)

پودر خوب

عملکرد

(%1-)

مثال تناسب

 

450

450

450

441

446

450

مقاومت بالا

850

850

850

850

850

850

پرداخت سطح

800

800

800

800

800

800

ساختار پیچیده

196

191

179

185

185

185

دسترسی محدود

جدول 2 برنامه آزمون نمونه برای ارزیابی قدرتمندی براساس دقت بچینگ

 

چنانچه این روند انجام شود، باید یک طرح آزمایشی بهتر و مجموعه ای از ابزارهای تجزیه و تحلیل را به کار برد. در مطالعات قبلی، این نوع تجزیه و تحلیل قدرتمندی جایی اجرا شد که مصالح چندگانه به صورت همزمان با هم تفاوت هایی داشته اند. با نسبت مصالح و ترکیبات مورد استفاده، نوسانات موجود در وزن های ماسه و سنگدانه های درشت، تاثیر کمی بر عملکرد SCC داشته اند. بیشترین تاثیر، زمانی رخ داد که وزن آب و کل وزن پودر تفاوت داشتند. بنابراین لازم است اینها به دقت و از نزدیک نظارت شوند. بعلاوه اگر این فاکتورها به صورت همزمان تغییر کنند، نوسانات عملکرد متفاوت می شوند.

برای مثال اگر مقدار آب کمتر از میزان هدف بچینگ باشد و کل پودر بیشتر، ویسکوزیته مخلوط می تواند به صورت چشمگیری افزایش یابد. از سوی دیگر اگر آب بیشتر از میزان هدف و کل پودر، کمتر از آن باشد، یک ظرفیت بالا برای ناپایداری مخلوط و تفکیک ایجاد می شود. همچنین دامنه تغییرات وزن بچینگ ها نیز بستگی به این دارد که اهداف نسبت مخلوط اولیه کجا تعیین می شوند. اگر محتوی آب مورد نظر بسیار پایین باشد پس در اولین حالت فوق الذکر تغییر ویسکوزیته ممکن است بسیار زیاد باشد.

قدرتمندی کلی اساساً با سیالیت، تفکیک و معیار آب دهی مرتبط است. با این وجود در بعضی از شرایط، ارزیابی قدرتمندی توانایی عبور از طریق افزایش وزن بچینگ سنگدانه های درشت تا حد ماکزیمم (نشان داده شده در جدول 1) مناسب و به جا است، اما در حد مینیمم، محدوده پودر و آب باید آزمایش شود. آزمون محدوده های سنگدانه ها مفید است اما این کار به صلاحدید متخصص موکول شده است. اگر احراز شود که قدرتمندی یک ترکیب ناکافی است، می توان موارد زیر را انجام داد:

 

  • در صورت امکان؛ کاهش سطح هدف جریان اسلامپ
  • افزایش حجم خمیر
  • افزایش مقدار VMA. گزارش های متعدد نشان داده که افزودن VMA به ترکیب SCC باعث تقویت قدرتمندی مخلوط می شود،.
  • کاهش ماکزیمم اندازه سنگدانه ها
  • افزایش تراکم خمیر

زمانی که یک ترکیب مناسب ایجاد می شود، مرحله بعدی تولید ترکیب از طریق کارخانه تولید بتن است و در صورت امکان استفاده از روش ها و اشکال پیشنهادی برای پروژه صورت می گیرد.

نحوه شناخت مخلوط بتن

آزمایش و ارزیابی تولید

 

زمانی که یک ترکیب SCC برای رسیدن به ویژگی های مورد نظر (سخت شدگی و تازه) ارائه می شود. آزمایش بتن ریزی با آزمایش مدل توصیه می شود. اگر چه این آزمون ها دیگر در آزمایشگاه ها انجام 

نمی شود، این مرحله هنوز بخشی از فرآیند توسعه بتن است. و با حوزه گسترده تری از آزمون به ارزیابی مخلوط از تولید تا تحویل و بتن ریزی می پردازد.

در حال حاضر تمرکز بر روی ویژگی های ترکیب SCC است، اما باید مفاهیم زیر مورد بررسی قرار گیرند:

 

  • بچینگ و ترکیب در یک مقیاس تولید

    بچینگ و ذخیره سازی مصالح خام

    کنترل رطوبت

    ترکیب بتن

    - نوع و اندازه میکسر

    - ترتیب بچینگ مواد

    - زمان ترکیب

  • تحویل

    تجهیزات تحویل

    زمان تحویل

  • بتن ریزی

    تجهیزات

    تکنیک ها

    مسیر بتن ریزی

    میزان بتن ریزی

    زمان

    زمان پرداخت (در صورتی که قابل اجرا باشد)

  • پرسنل

    آموزش

    بچینگ و ترکیب

    بتن ریزی

 

علاوه بر آزمون توانایی فرد برای تولید، تحویل و یا بتن ریزی، مزایای واقعی SCC در برابر بتن معمولی را می توان در این زمان ارزیابی کرد. زمان مورد نیاز برای بچینگ، ترکیب، بتن ریزی و پرداخت تماماً می تواند اندازه گیری شود. زمانی که الزامات منابع انسانی برای بتن ریزی و پرداخت محسوس می باشد، سایر مزایا از قبیل زیبایی شناسی مطلوب که منجر به کاهش وصله کاری و مصالح می شود می تواند تعیین گردد. بنابر توصیه مولف، تولید کننده یا پیمانکار، آنالیز مزایا را در طول مرحله مدل آزمایشی (آزمایش ماکت برابر) اجرا کند و سپس به بررسی مجدد آن در طی تولید واقعی بپردازد تا تعیین کند که آیا بازدهی وجود داشته و میزان آن چقدر بوده است.

باید تفکر دقیق و توجهات بیشتری در مورد فرآیند مدل آزمایشی اعمال گردد. پیش از آزمایش، جلسه ای با مسئولان کنترل کیفیت، تولید و بتن ریزی سازماندهی شود. هر عملکرد باید از وظایف ارزیابی خاص جهت اجرا برخوردار باشد و وردی حاصل از تمام طرفین بررسی گردد. فرآیند عملیات از آزمون آزمایشگاهی تا محیط تولید باید طی شود و مسئولان بتن ریزی وحدت نظر ایجاد کنند. اگر یک کارگر بتن ریزی اطلاعات کافی در این زمینه نداشته باشد و آموزش حداقلی در بتن ریزی با SCC را کسب نکرده باشند، چگونه می توان تعیین کرد که آیا یک پرداخت سطح غیرقابل قبول ناشی از ترکیب ضعیف، تکنیک بتن ریزی ضعیف یا هر دو بوده است؟ متخصص باید در موقعیتی قرار داشته باشد که به وضوح متغیرها را برای پاسخ به این سوال تفکیک کند.

شناسایی یک ترکیب SCC شامل تست آزمایشگاهی ویزگی های سخت شدگی و ، آزمون قدرتمندی و آزمایش های مدل آزمایش تولید یا آزمایش بتن ریزی می گردد. این فرآیند ارتباطی میان تئوری و عمل بوده و یک متخصص می تواند مطالب بیشتری در رابطه با ترکیبات SCC و کاربرد آن بیاموزد. ساماندهی زمان سرمایه گذاری منابع تا جایی افزایش می یابد که متخصص به ساخت مدل های آزمایشی و تست بتن ریزی می پردازد زیرا در حال حاضر حجم بتن و تعداد افراد دخیل رو به افزایش است. همان طور که در اکثر فعالیت ها می بینیم، موفقیت فرآیند شناسایی به سرمایه گذاری های زمانی و آماده سازی قبل از اجرا بستگی دارد.

 

جهت اطلاعات بیشتر در زمینه تولید و فروش بتن و محصولات مرتبط و همچنین اطلاع از قیمت روز بتن می توانید با شرکت مهندسین مشاور مهرازان پایدار با نام نشان تجاری ثبت شده کلینیک بتن ایران با شماره 02145872 واحد مهندسی تماس حاصل نموده و یا جهت اطلاعات بیشتر در این زمینه به وب سایت رسمی شرکت WWW.CLINICBETON.IR مراجعه فرمایید.

  • مسعود اسماعیلی
  • ۰
  • ۰

SCC یکپارچه، زمانی حاصل خواهد شد که ذخیره سازی خوب، انباردای و بچینگ مواد بطور دقیق انجام شده است. عرضه کافی و پیوسته مواد خام ضروری برای تکمیل یک پروژه اهمیت بسیاری دارد. تغییر متوسط عرضه مواد خام یک پروژه ممکن است منتهی به عملکرد ناپیوسته ترکیب شود. برای مثال تغییر منبع خاکستر بادی می تواند منجر به تغییر هوای وارد شده به مخلوط و یا تغییر در لزوم مقدار افزودنی و نیز تغییر سیالیت یک ترکیب SCC مشخص، گردد. ذخیره سازی مواد خام باید طبق دستورالعمل های دقیق صورت گیرد، از قبیل مواردی که در ACI 30E یا سایر دستورالعمل های کاربردی و معادل ثبت شده اند. باید این اطمینان را ایجاد کرد که کل مواد پودری خشک و دارای جریان آزاد باشند تا امکان بچینگ درست و کارآمد فراهم گردد. توزیع مستمر اندازه ذرات مصالح برای تولید ویژگی های بتن SCC پیوسته (مستحکم) اهمیت دارد. مصالح باید به گونه ای ذخیره سازی شوند که مانع تفکیک شده و میزان رطوبت را پیوسته حفظ کنند. ذرات ریزتر در مصالح نشست می کنند، مخصوصاً در طول حمل و نقل باید مراقبت کافی در طول تخلیه مصالح صورت گیرد و ذخیره سازی سنگدانه ها به صورت لایه بندی باشد نه به صورت توده انباشته شده. یک روش برای کاهش جدا شدگی سنگدانه، تفکیک آن به چندین اندازه قابل کنترل تر از ماکزیمم تا مینیمم به نسبت سایز کمتر از 4 می باشد (برای سنگدانه های 25 میلی متر و کوچکتر). این تکنیک امکان انعطاف پذیری بیشتری در تنظیم ترکیب سنگدانه ها به منظور حفظ ثبات دانه بندی را فراهم می سازد. بنابراین تعداد بیشتری از محل های نگهداری و انبارها برای ذخیره سازی سنگدانه ها و توزیع آنها مورد نیاز است و این عملاً برای همه مکان ها، امکان پذیر نمی باشد.

انبارهای نگهداری سنگدانه ها و سیلوهای پودر باید تا حد ممکن پر شوند. پر کردن این انبارها (در شب قبل) به سنگدانه ها این امکان را می دهد که به شرایط رطوبتی پایدار دست یابند. با این وجود باید احتیاط کرد، اگر سنگدانه هایی با رطوبت زیاد در انبارها (در شب قبل) ذخیره شوند، رطوبت کافی در سطح کم شده و محتوی رطوبت سنگدانه های کف محفظه افزایش می یابد که ممکن است منجر به نوساناتی در عملکرد ترکیبات SCC در چند روز آتی شود. در بعضی از موارد، توصیه می شود در صورتی که سطح رطوبت بالا باشد اولین بخش سنگدانه ها در نوبت صبح برداشته شود.

 

کنترل رطوبت سنگدانه ها

 

یکی از رایج ترین دغدغه ها در طول تولید میدانی SCC، کنترل کافی رطوبت آزاد سنگدانه ها و پودرها در بتن می باشد. رطوبت اضافی و کنترل نشده باعث افزایش نسبت WV/PV، کاهش ویسکوزیته پلاستیک مخلوط و به صورت بالقوه موجب سیالیت بیشتر، ناپایداری، تفکیک و آب دهی می شود. رطوبت سنگدانه های ریز به میزان 6 تا 8 درصد پایدار شده است و این میزان برابر است با 50 تا 70 کیلوگرم در مترمکعب آب منتقل شده توسط سنگدانه های ریز در مخلوطی که از 850 کیلوگرم در مترمکعب ماسه استفاده می کنند. بنابراین برخورداری از دانش روزانه صحیح در مورد میزان رطوبت بسیار حائز اهمیت است.

در حال حاضر روش های متعدد و تجهیزات گوناگونی وجود دارند که برای کنترل میزان رطوبت مورد استفاده قرار می گیرند و می توانند به صورت دستی یا اتوماتیک طبقه بندی شود. روش های دستی شامل روش های آزمون استاندارد از قبیل ASTM C 56، روش آزمون برای کل میزان رطوبت قابل تبخیر سنگدانه ها از طریق خشک کردن، ASTM C 70، روش آزمون استاندارد برای رطوبت سطح در سنگدانه های ریز می باشد. این روش ها نیازمند یک تلاش تکنیکی جهت انجام آزمون و محاسبه میزان رطوبت مصالح می باشد.

آنها زمانی می توانند مورد استفاده قرار گیرند که تولید بتن SCC تحت مراقبت و نظارت کافی بر هر بچینگ انجام گیرد.

مشکل این است که با این روشها، رطوبت در یک نقطه از زمان واحد اندازه گیری می شود و تقریباً نسبت های یکسانی در آزمون ها ارائه می شود.

اگر ظرفیت موجود در میزان رطوبت متفاوت باشد مانند زمانی که بوران یا آب و هوای بسیار خشک حاکم است، باید یک صورتجلسه آزمون دقیق (که شامل آزمون مکرر رطوبت و بتن می باشد) جهت ایجاد عملکرد پایدار اجرا شود. بعضی از ولید کنندگان به ذخیره سازی سنگدانه ها در مکان های سرپوشیده مبادرت می ورزند تا بتوانند تاثیر تغییرات آب و هوا را به حداقل برسانند.

روش های تعیین رطوبت اتوماتیک شامل استفاده از رطوبت سنج در انبارهای سنگدانه و نیز در مخزن ترکیب می باشد. رطوبت سنج انبارهای سنگدانه عموماً طوری پیکربندی می شود که بازخورد سیستم بچینگ را به دنبال دارد. (به صورت اتوماتیک آب اضافه شده به بچینگ را برای جبران رطوبت سنگدانه ها تنظیم می کند). مطابق با تحقیقات صورت گرفته، رطوبت سنج ها به صورت منطقی برای سنگدانه های ریز مناسب می باشند نه برای سنگدانه های درشت. دستورالعمل های موقتی PCI بیان می کند که رطوبت سنج قادر است تا تغییرات 5 درصد را در میزان رطوبت در هر دو سنگدانه های ریز و درشت مشخص کنند.

ACI 304 عنوان می کند که دستگاه رطوبت سنج باید در نمونه های خشک کنندگی کوره ای به صورت ماهیانه مجدداً تنظیم شوند (و یا زمانی که اسلامپ بتن تولید شده پیوسته نباشد). مطالعات موجود نشان داده اند که این فرآیند تنظیم باید با دقت بیشتر انجام شود، به خصوص در مورد نمونه ای که از خشک کننده های کوره ای گرفته می شوند. این نمونه باید از نزدیکترین فاصله به رطوبت سنج برداشته شود. استفاده از یک رطوبت سنج دقیق که به درستی تنظیم شده باشد موجب تنظیم زمان واقعی در طی بچینگ و فرآیند ترکیب بوده و نیز موجب تولید یکنواخت و منسجم می گردد. اخیراً در یک بررسی ارزیابی کیفیت مجمع NRMC در ایالات متحده از تولید کنندگان درخواست نمود که تعداد دفعات استفاده از رطوبت سنج سنگدانه ای و نیز تعداد دفعات تنظیم رطوبت سنج خود را اعلام کنند.

زمانی که بحث تنظیم رطوبت مطرح شد 89 درصد اظهار نمودند که حداقل روزی یک بار رطوبت را کنترل می کنند یا از رطوبت سنج استفاده می کنند. 29 درصد عنوان نمودند که آنها این فعالیت را به صورت هفتگی انجام داده، 29 درصد ماهیانه و 21 درصد هر سه ماه یک بار، درحالی که 14 درصد عنوان نمودند این کار را سالیانه یا بیشتر انجام می دهند.

رطوبت سنج ها می توانند در محفظه ترکیب بتن نصب شوند. این رطوبت سنج ها میزان رطوبت ترکیب بتن را تعیین می کنند، زمانی که تمام یا کل مواد بسته بندی شده باشند و امکان افزایش آب در پایاین دوره فراهم شود. آنها می توانند در یک میکسر (بطور ثابت یا به عنوان یک رطوبت سنج چرخان متصل به بازوهای ترکیب) قرار بگیرند. مطالعه ای در مورد رطوبت سنج در میکسر منتشر شده که شامل یک آزمایش با دو میزان مشخص آب اندازه گیری شده، می باشد.

با توجه به موقعیت رطوبت سنج (ثابت یا چرخان)، نتیجه آزمایش، سطوح مختلف تکرارپذیری و خطا را در محاسبه میزان آب نشان می دهد. این ارزیابی با رطوبت سنج چرخان دقیق تر است.

در طول بچینگ، کل آب اندازه گیری شده با افزودن مواد یا مصالح تغییر می کند. به علاوه همگن سازی مخلوط نیز تغییر خواهد کرد. ارزیابی دقیق رطوبت با رطوبت سنج میکسر می تواند تا زمان 30 الی 45 ثانیه بعد از دسته بندی تمام مصالح جهت آمادگی برای پایدار سازی انجام شود. توصیه شده است که تولید کننده، این زمان پایدار سازی را با نماینده فنی شرکت (در امر محاسبه رطوبت) مورد بررسی قرار دهد. فقدان زمان مجاز پایدار سازی می تواند منتهی به عدم انطباق یا پیوستگی در ویزگی های تازه شود.

 

سنگدانه ها

ترکیب SCC

 

توالی و ترتیب فرآیند ترکیب بر پیوستگی تولید SCC تاثیر می گذارد، علاوه بر ترکیب بچینگ، MNL 116 عنوان می کند که زمان مورد نیاز ترکیب برای بتن به فاکتورهای متعددی بستگی دارد، از جمله اندازه بچینگ، کارآیی بچینگ، اندازه و درجه بندی مصالح، نوع میکسر، شرایط ترکیب تیغه ها و کارآمدی ترکیب خود میکسر. زمان ترکیب، زمان مورد نیاز برای رسیدن به ترتیب همگن بعد از افزودن تمام مصالح به میکسر است.

ترتیب و سرعتی که به وسیله آن مصالح به میکسر افزوده می شوند می تواند بر زمان ترکیب مورد نیاز تاثیر بگذارد. از آنجایی که ترکیبات SCC شامل مصالح نسبتاً ریز بیشتری هستند، ترتیب گذاری پودرها اهمیت ویزه ای دارد. اگر مصالح ریز نخست به مخزن میکسر اضافه شوند، هد پکینگ (HP) ممکن است اتفاق بیفتد. HP موقعیتی است که یک بسته توده فشرده از ذرات ریز به سر میکسر می چسبند و با بتن ترکیب نمی شوند و منجر به ایجاد ویژگی های ناپایداری خواهد شد. برای اجتناب از HP در یک میکسر درام، ACI 304 پیشنهاد افزایش 10 درصدی سنگدانه های درشت و آب را می دهد. اگر پودرهای ریز به آب اضافه شوند (قبل از افزودن سنگدانه ها) ممکن است گلوله ای شدن رخ دهد و این گلوله های پودر / سیمان نمی توانند خرد شوند و ترکیب آنها به صورت کامل انجام نمی گیرد. ترتیب بچینگ براساس میکسر و الزامات کارآمدی تولید در کارخانه متفاوت است. در بعضی از نمونه ها قبل از افزودن آب، مصالح خشک ترکیب می شوند، با این وجود نوعی ترتیب بچینگ مورد استفاده جهت به حداقل رسانی گلوله ای شدن در پودرهای بالاتر و نیز ترکیباتی با آب کمتر در یک میکسر درام در ذیل آمده است:

 

  1. سنگدانه درشت و %50˃ آب ترکیب
  2. پودرهای سیمان و سایر پودرهایی که به آرامی افزوده می شوند
  3. سنگدانه های ریز
  4. آب طبیعی
 

زمان بندی افزایش افزودنی ها می تواند بر ویژگی های SCC از قبیل سطح جریان اسلامپ یا پمپ پذیری بتن، حفظ کارایی و تولید محتویات هوا تاثیر گذارد. باید دستورالعمل تولید کننده مخلوط برای افزودنی های به کار رفته را به اجرا در آورد.

SCC می تواند در تمام انواع میکسرها ترکیب شود اما مخلوط سازی ناکافی بتن خود متراکم می تواند تاثیر منفی بر روی مقاومت فشاری و جریان اسلامپ داشته باشد. به خاطر تفاوت موجود در عملیات مخلوط سازی در میکسر، زمان ترکیب مورد نیاز برای دستیابی به ویژگی های SCC پیوسته متفاوت است.

 

 ACI 304 به ترسیم انواع میکسر در ادامه می پردازد:

  • میکسرهای بشکه ای: به شکلی است که پره های داخلی به داخل درام متصل است. عملیات مخلوط سازی در اینجا یک عمل خمشی بتن به داخل خودش می باشد و این میکسرها می توانند بخشی از یک میکسر اصلی بوده یا بار یک کامیون شوند. سرعت ترکیب در مقایسه با سایر انواع میکسرها پایین است. اینها از حداقل کارایی برخوردار می باشند یعنی اینکه زمان ترکیب برای رسیدن به ویژگی همگن SCC طولانی تر است. اگر SCC از طریق میکسر درام ترکیب شده یا توزیع شوند، کل آب شستشو باید از درام خارج شود (قبل از بچینگ مصالح). کنترل آب شستشو در درام های کامیون، یک مولفه کلیدی برای تولید مستمر SCC است.

    تولید کننده باید از هر نوع تفاوت بین کامیون ها آگاهی داشته باشد، از قبیل تیغه های خورده شده که می تواند بر عملیات ترکیب و در نتیجه بر زمان مورد نیاز ترکیب مصالح تاثیر منفی بگذارد. استفاده از کامیون هایی با کارآمدی ترکیب متفاوت در تولید SCC در یک پروژه ممکن است منجر به ایجاد ناهماهنگی در ویژگی های ارزیابی شده، گردد.

    توصیه می شود که تولید کننده یک مجموعه کنترل شده کامیون ها را برای یک پروژه SCC مشخص انتخاب کند.

  • میکسرهای میله عمودی: این میکسرها می توانند میکسرهای سیاره ای با چندین بازوی ترکیب چرخان باشند که متصل به یک میله چرخشی مرکزی می باشند. و نمونه دیگر میکسرهای پن چرخان 

    می باشند.

  • میکسرهای پاگمیل: این میکسرها دارای یک محفظه ثابت با یک میله افقی هستند. تیغه های ترکیب ساز به میله ها متصل می شوند که می توانند از ترکیبات متفاوتی برخوردار باشند، مانند تیغه های چرخشی / نواری، سرعت ترکیب کند بوده و ممکن است نیازمند زمان ترکیب مشابه با میکسر درام باشد.

    میکسر دیگر که در ACI 304 شفاف سازی نشده است، میکسر دو میله ای است. اینها میکسرهای بسیار کارآمد و پرسرعت بوده که اساساً در کارخانه های پیش ساخته استفاده می شود. زمان ترکیب در مقایسه با سایر انواع میکسرها پایین تر خواهد بود. آنها SCC را بسیار خوب و مطلوب ترکیب می کنند.

  • میکسرهای ولومتریک یا میکسرهای حجمی: این میکسرها واحدهای کاملی هستند که سنگدانه ها، سیمان، آب و ترکیبات موجود در یک خودرو را حمل می کنند. آنها در کل برای پروژه های با حجم کوچکتر استفاده می شوند. ترکیب در یک میکسر نوع پیچی رخ می دهد و SCC به صورت موفق در این میکسرها تولید می شوند (. باید ترکیب موجود قبلاً آزمایش شود، اما زمان ترکیب لزوماً قابل تنظیم نیست.
 

نسبت حجم مخلوط به ظرفیت میکسر بر ویژگی های تازه SCC و یا زمان ترکیب مورد نیاز برای دستیابی به ویژگی ها یمطلوب تاثیر می گذارد. این تاثیر برای میکسرهایی با کارایی کمتر از قبیل میکسرهای درام در نظر گرفته شده است و اندازه بچینگ جهت ظرفیت کامل افزایش می یابد. اگر بچینگ ها با اندازه های متفاوت و یا SCC مشابه تولید شوند باید به این تفاوت ها توجه نمود و فرآیند ترکیب را نیز تنظیم کرد. اکثر تولید کنندگان بتن از یک ظرفیت برآورد شده برای تجهیزات خویش برخوردارند و توصیه های آنها باید مدنظر قرار گیرد.

نوع ترکیب SCC که برای بچینگ استفاده می شود بر زمان مورد نیاز ترکیب تاثیر می گذارد. ترکیباتی با ویسکوزیته پلاستیکی (خمیری) بالاتر نیازمند یک مخلوط سازی ملات طولانی تر است. در یک مطالعه و تحقیق منتشر شده، داده ها بیانگر عملکرد بالا و خود متراکمی بتن بوده و این نشان دهنده ی زمان پایدار سازی (زمان ترکیب مورد نیاز برای دستیابی به خواندن آمپر سنج میکسر پایدار می باشد) به عنوان تابعی از نسبت آب به سیمان (W/C) با دو محتویات سیمان متفاوت و دو مقدار HRWR است. این تحقیق نشان داد که ترکیباتی با نسبت بالاتر W/C نیازمند زمان ترکیب کوتاه تری در مقایسه با ترکیباتی با W/C پایین تر می باشند. به وسیله استفاده از گراف ارائه شده در مرجع 13، نویسنده کل محتویات آب در هر مترمکعب را برآورد نموده و آن را در برابر زمان پایدار سازی به تصویر کشیده است.. یک تولید کننده بتن که به طراحی یا تولید ترکیبات SCC متعدد می پردازد، می داند که یک ترکیب SCC با محتوی آب کمتر، نیازمند مخلوط سازی بیشتری برای تولید ویژگی های پایداری است. در شرایط برابر، آب بیشتر در هر حجم واحد بتن موجب تسهیل در فرآیند ترکیب می شود.

 

مخلوط کننده

رهاسازی مخلوط جهت استفاده

 

زمانی که تمام مصالح بچینگ شده و مخلوط می شوند، باید این ارزیابی صورت گیرد که آیا ترکیب SCC، آماده رها سازی است. اکثر شرکت های تولیدی مانند کارخانه های پیش ساخته، فرآیند بچینگ و ترکیب را از موقعیت مرکزی نظارت می کنند. این فرآیند شامل ترتیب گذاری مصالح و میزان افزایش مصالح بوده که از این محل کنترل می شود.

به علاوه زمانی که تمام مواد با مصالح اضافه کردن اپراتور بچینگ در بعضی از موارد به نظارت مصرف برق میکسر و یا زمان واقعی یا نسبت W/C در محفظه ترکیب خواهد پرداخت. مصرف برق میکسر ممکن است با آمپرسنج نمایش داده شود، مانند موردی که در تصویر 10-12 نشان داده شده است یا گاهی اوقات در صفحه کامپیوتر نشان داده می شود. باید بعد از بچینگ مواد، به آمپرسنج فرصت داد تا تثبیت شود، سپس اقدام به خواندن آن نمود. زمان تثبیت، مشابه با رطوبت سنج محفظه ای است. یک مطالعه نشان داده که این زمان ها ممکن است بسیار مشابه بوده و می تواند برای تعیین زمان ترکیب مورد نیاز در یک میکسر و یا مجموعه ای از نسبت های مخلوط مورد استفاده قرار گیرد. پرسنل بچینگ به نظارات بر خواندن آمپرسنج خوااهند پرداخت و زمانی که به میزان مصرف مورد نظر رسیدند و عقربه تثبیت شد، بچینگ ها برای استفاده آزاد می شوند. ارقام بالاتر آمپرسنج بیانگر این هستند که میکسر سخت تر کار کرده تا بتن را مخلوط کند. این به صورت سنتی حاصل یک اسلامپ پایین تر و بتن سفت تر می باشد.

در سایر موقعیت ها، فشارسنج ها که جهت سنجش اسلامپ شناخته شده اند بر روی کامیون های بتن آماده نصب شده است کنتورهای اسلامپ سنج به نظارت بر فشار هیدرولیک ضروری جهت برگرداندن میکسر می پردازد. نتایج حاصل از این سیستم می تواند تحت تاثیر تعدادی از متغیرها قرار گیرد (جدا از ویژگی های بتن از قبیل اندازه بچینگ، سرعت ترکیب و شرایط تیغه میکسر).

آیا در استفاده از آمپرسنج یا فشارسنج اصول اساسی مشابه بکار می رود؟ یک کنتور، از مصرف انرژی یا خواندن فشار به عنوان یک شاخص مقاومت مخلوط بتن استفاده می کند، این مفهوم مشابه با روش عملکرد رئومتر بتن است. مطالعات قبلی بیانگر تشابه عملکرد رئومتر بتن و اسلامپ سنج بوده اند. درحالی که سایر مطالعات معادله هایی را پیشنهاد داده اند که با آن پایداری رئولوژیکی حاصل از مصرف انرژی میکسر پن را پیش بینی می کند.

در اینجا هدف پیش بینی رئولوزی از مصرف انرژی در تجهیزات ترکیب نیست، بلکه هدف درک مفیدتر استفاده از این تجهیزات جهت کنترل تولید SCC است. برای فهم بهتر مفهوم داده ها، در مورد این تجهیزات یک مرور کلی از ارزیابی رئولوژیکی بتن ضروری است.

ثابت های رئولوژیکی از تنش تسلیم و ویسکوزیته قبلاً در فصل سه مورد بحث و بررسی قرار گرفت. برای تعیین آن پارامترها در یک ترکیب بتن، یک رئومتر بتن مورد نیاز است، یکی از آنها رئومتر IBB است. عملکرد آن به صورت اندازه گیری یک میزان گشتاور به عنوان یک ایمپلر چرخشی H شکل (در یک حرکت سیاره ای) است که در میان آن یک نمونه بتن با سرعت های معین، می چرخد. 

بیشتر میکسرهای مرکزی صرفاً قادر به ترکیب نمودن هستند، از این رو مصرف برق را در یک سرعت واحد اندازه گیری می کنند. بنابراین نمی توان در این نقطه زمانی، محور ترسیم کرده و نتیجه گیری خطی کرد. اما برای کامیون های میکسر بتن که مجهز به اسلامپ سنج هستند می توان سرعت را تغییر داده و نمودار سرعت ترکیب را در مقابل فشار هیدرولیک ترسیم نموده. تعیین نسبت ترکیبات بتن خود تراکم بسیار مهم است.

با این وجود اکثر تولید کنندگان، خواه در بچینگ مرکزی یا در یک کامیون از خواندن فشار/ سرعت واحد برای نظارت جریان اسلامپ استفاده می کنند. در انجام این امر، تولید کننده باید به خاطر داشته باشد که خواندن اسلامپ سنج یا آمپرسنج تحت تاثیر هر دو تنش تسلیم (جریان اسلامپ یا اسلامپ) و ویسکوزیته (چسبندگی) ترکیب قرار دارد. تصویر زیر نشان دهنده این است که ترکیبات A، B و C آزمون شده و مصرف برق یا گشتاور آنها در یک سرعت واحد اندازه گیری شده است. از این نقطه سرعت واحد یک خط نقطه دار عمودی به خطوط متقاطع A، B و C کشیده شده است. این نقطه تقاطع، به یک گشتاور واحد آمپر یا مقدار فشار بر روی محور Y مرتبط است. این چیزی است که زمان خواندن مصرف برق نقطه واحد در یک میکسر بتنی رخ می دهد. در این مثال، به درستی تفاوت جریان اسلامپ بتن ترکیبات A و B پیش بینی می شود، زیرا ویسکوزیته های آنها مشابه هستند. اما در ترکیبات B و C به علت تفاوت در ویسکوزیته، میزان اسلامپ و یا جریان اسلامپ را نمی توان پیش بینی کرد. در این مورد خواندن گشتاور، آمپر یا فشار برای مخلوط B بیشتر از مخلوط C است. اما به لحاظ نظری این دو ترکیب باید دارای جریان های اسلامپ مشابه باشند (همان طور که از طریق مقادیر تنش/ محور Y برابر بیان شد). تفاوت در ارزیابی نقطه واحد به علت ویسکوزیته بالاتر ترکیب B است و این اساساً بیانگر این است که تکنیک کاربرد خواندن مصرف برق/ سرعت واحد می تواند شاخص تغییر تنش تسلیم باشد، در صورتی که ویسکوزیته ثابت باشد یا در موردی که ویسکوزیته تغییر کند، تنش تسلیم باید ثابت باشد. در هر صورت نباید هر دو همزمان اتفاق بیفتند.

 

گشتاورد نسبت به سرعت برش

 

در این سیستم، تنظیماتی در افزودنی های معین و بدون ایجاد تغییر نسبت های مخلوط انجام گرفته است. این تغییرات موجب افزایش ویسکوزیته مخلوط شده، درحالی که یک اسلامپ مشابه حفظ شده است.

اپراتور بچینگ، در قبال تغییرات رئولوژیکی موجود در ترکیب قبل از اعمال تغییرات در فرآیند تولید، آموزش ندیده است. وی نیازمند مطالعه خاص آمپرسنج (قبل از تخلیه دستی) می باشد. با افزایش ویسکوزیته ترکیب (ترکیب 2 در برابر ترکیب 1)، خواندن آمپرسنج در حال حاضر بالاتر از مورد پیش بینی شده را نشان می دهد زیرا ترکیب 1 زودتر به مخلوط HRWR اضافه شده بود، وی این فرض را مطرح نمود که میزان رطوبت نادرست بوده و تصمیم گرفت تا آب را برای کاهش عدد آمپرسنج اضافه کند.

زمانی که آب به یک ترکیب بتن افزوده می شود، تنش تسلیم و ویسکوزیته کاهش می یابند. زمانی که آب برای کاهش عدد آمپرسنج تا سطح ترکیب اصلی 1 افزوده می شود، تنش تسلیم پایین تر (ترکیب 3) به دست می آید. این مورد در محل بتن ریزی زمانی که مخلوط هایی با اسلامپ بالاتر از میزان تولرانس ماکزیمم وارد می شوند، کاملاً مورد تایید قرار گرفته است. علاوه بر این، مقاومت های تراکمی پایین تر از میزان پیش بینی شده (ناشی از آب اضافه شده) بوده است.

بنابراین اگر تغییرات در یک ترکیب بتن صورت گیرد، تاثیرات ممکن بر بچینگ و فرآیند ترکیب باید پیش بینی شده و انتقال یابد. این در مورد SCC از اهمیت زیادی برخوردار است، به خصوص اگر انواع متفاوت مخلوط SCC تولید شوند یا اگر مخلوط شامل افزودنی های اصلاح ویسکوزیته (VMAs) یا سایر افزودنی ها باشد که می تواند بر ویسکوزیته تاثیر بگذارد. آمپرسنج یا اسلامپ سنج باید با جریان اسلامپ و زمان T50 هر مخلوط SCC که تولید می شوند تنظیم شود.

 

آمپرسنج نسبت به سرعت برش

اصلاح رویکرد

 

زمانی که بحث تولید پیوسته SCC مطرح است و یا زمانی که هر مخلوط بتنی را بررسی می کنید، باید یک حوزه توسعه کنترل بچینگ و فرآیند مخلوط مدنظر قرار گیرد. توسعه می تواند به شکل آموزش اپراتور بچینگ باشد همچنین می تواند به شکل توسعه تجهیزات و رویه های نظارت باشد. کلید کشف یک فرآیند بچینگ صنعتی موثر، انتخاب شاخص های اصلی مناسب در عملکرد و کیفیت می باشد. صنایع پیشرفته از قبیل شیمیایی به صراحت اهداف خود را مشخص نموده و به نظارت انواع متغیرها در طول تولید می پردازند تا از کیفیت نهایی اطمینان حاصل کنند.

برای نمونه در طول تولید پلیمرهای معین، زمانی که مواد خام درون رآکتور وارد می شوند، تولید کننده ممکن است دما، PH، ترکیب، فشارهای پمپ چرخشی و سایر متغیرها را نظارت کند تا اطمینان یابد که واکنش شیمیایی در مقادیر درست صورت گرفته و به پارامترهای صحیح دست یابد. با این وجود در تولید بتن اکثر تولید کنندگان از شاخص اصلی کیفیت تولید در ترکیب برخوردار نیستند، آنهایی که از اسلامپ سنج یا آمپرسنج و یا رطوبت سنج داخلی استفاده می کنند و تولید کننده صرفاً یکی از آنها را مورد استفاده قرار می دهد.

علاوه بر نظارت بر مصرف برق میکسر و نسبت W/C بچینگ در طی تولید بتن، این امکان وجود دارد که به نظارت بر زمان بررسی پایدارسازی بتن پرداخته و از آن به عنوان شاخص کیفیت بچینگ استفاده کند.

همان طور که در تصویر 10-10 اشاره شده است، زمان تثبیت برای یک ترکیب مشخص (با اندازه معین بچینگ، نوع و اندازه میکسر) تحت تاثیر محتوای آب آن مخلوط قرار دارد. هر میزان که آب در بچینگ ها بیشتر باشد، قرائت زمان پایدارسازی کوتاه تر است. بنابراین به صورت تئوریکی، تولید کنندگان بدون رطوبت سنج محفظه ای م یتوانند از این به عنوان یک تکنیک نظارت بر تولید، جهت تایید کلی میزان مناسب آب استفاده کنند.

نظارت بر متغیر های چندگانه در طول تولید، گزینه ای برای توسعه بیشتر استمرار تولید SCC است. مولف از هیچ نرم افزار تولید بتنی که زمان بتنی که زمان تثبیت را نظارت کند (که به جهت کنترل تولید استفاده شود) آگاهی ندارد.

بنابراین در این زمان باید دو ارزیابی برای مصرف قدرت میکسر و نسبت  W/C بچینگ وجود باشد، اگر یک کارخانه تولید بتن بتواند به صورت اتوماتیک هر دوی اینها را نظارت کند، آنها می توانند بصورت توام برای کنترل تولید بیشتر استفاده شوند. یک ماتریس زمانی می تواند ایجاد شود که بررسی مصرف برق در محور X ترسیم می شود و بررسی نسبت W/C بر روی محور Y (تصویرزیر). نقاط مرکزی که از طریق خطوط توپر نشان داده می شوند (از هر دو محور) نتایج بررسی ها برای ترکیب تولید شده هستند و خطوط نقطه دار زنجیره ای که از طریق تجربه و عمل تعیین می شوند متغیرهای قابل قبول می باشند. این ماتریس مجموعه ای از نسبت های ترکیب را در بردارد که به صورت منظم تولید شده اند و هیچ تغییری در مواد خام رخ نداده است.

چهارگوش چپ پایینی18 به عنوان حوزه ای تعریف شده است که مصرف برق پایین تر از میزان مصرف هدف است (توام با آب که کمتر از میزان هدف در نظر گرفته شده است). این نشان می دهد که این ترکیب دارای آب کمی بود، اما به راحتی ترکیب می شود. همان طور که بحث و بررسی ها نشان داد آب کمتر، سطح جریان اسلامپ را پایین آورده و ویسکوزیته یک ترکیب را افزایش می دهد و منجر به مصرف برق بالاتری خواهد شد. بنابراین در این موارد، کنترل کیفیت برای بررسی و تعیین علت این اختلاف ضروری می باشد. بدین صورت چهار گوش بالا سمت راست مصرف محدوده ای است که رطوبت با نسبت W/C بالاتر از حد معمول است، اما مصرف برق نیز بالا است. بطور کلی در شرایط مساوی آب بیشتر منجر به سیالیت بالاتر و ویسکوزیته پایین تر می شود که مصرف برق بیشتر را در پی دارد.

بررسی های ماتریس در این دو چهار گوش بیانگر مشکلات جدی تر تولید می باشد که باید مورد بررسی قرار گیرند.

 

سیالیت پایین یا ویسکوزیته خیلی بالا زمانی که میزان آب بالا باشد- مشکل در تجهیزات طراحی مواد یا بچینگ می باشد.

کاهش آب و افزایش HRWR

سیالیت بسیار بالا ویسکوزیته

بسیار پایین می باشد

تنظیم با کاهش آب

ماکزیمم نسبت آب به سیمان

 افزایش HRWR

 

 کاهش HRWR

سیالیت بسیار پایین ویسکوزیته بسیار بالا

زمانی که میزان آب پایین باشد

تنظیم با آب ذخیره

کاهش HRWR و افزایش آب

زمانی که میزان آب پایین باشد سیالیت بسیار بالا ویسکوزیته بسیار پایین

می باشد مشکل در تجهیزات طراحی

مواد یا بچینگ می باشد

رطوبت اتوماسیون به نسبت W/C و ماتریس مصرف برق

 

مطالعه ماتریس در چهارگوش های بالا به سمت چپ و یا پایین به سمت راست 18 معرف نواحی ای می باشد که تنظیمات آب می تواند اعمال گردد. در قسمت بالا به سمت چپ، قرائت رطوبت بسیار بالا است و مصرف برق پایین است که نشان می دهد آب باید در ترتیب بچینگ های بعدی کاهش یابد. در قسمت پایین به سمت راست، کل رطوبت ترکیب پایین بوده و مصرف برق بالا است. بدین معنی است که باید آب تمیز افزوده شود. در مواردی که خواندن رطوبت در حد هدف است اما خواندن مصرف برق بالاتر یا پایین تر است. مقدار HRWR می تواند تنظیم شود تا جریان اسلامپ کاهش یا افزایش یابد و به سمت مرکز ماتریس حرکت کند. با این وجود اگر خواندن مصرف برق در حد هدف باشد، اما خواندن رطوبت بالاتر یا پایین تر از میزان هدف باشد، می توان تنظیم اولیه برای آب و HRWR به منظور حرکت به سمت مرکز ماتریس را اعمال نمود، با این وجود نتایج در این حوزه ها می تواند معرف یک ماده بالقوه، تجهیزات یا موضوع بچینگ باشد که باید مورد بررسی قرار گیرد. اگر این رابطه مورد استفاده قرار گیرد لازم است برای هر ترکیب SCC و هر کارخانه اعمال شود. در حال حاضر مولف حداقل یک کارخانه کنترل بچینگ بتن را می شناسد که می تواند بر مصرف برق و نسبت W/C در روی همان صفحه نظارت داشته باشد و نه در مورد یک ماتریس که قبلاً ذکر شد. مولف تولید کننده ای را نمی شناسد که مشخصاً به زمان تثبیت نظارت کند و از آن به عنوان یک شاخص اصلی کیفیت بچینگ استفاده کند.

گزارش شده ابزار دیگری که برای نظارت بر بچینگ ها مورد استفاده قرار می گیرد برای اندازه گیری ویژگی های رئولوژیکی مخلوط در نظر گرفته شده و در ابعاد تجاری موجود است. این ابزار شامل یک پروب متصل به یک بازو و در داخل میکسر بوده که مقاومت ترکیب بتن تا حرکت و جابجایی پروب از طریق آن (در طول ترکیب) را اندازه گیری می کند. این اطلاعات به داده های رئولوژیکی (که در نرم افزارهای تخصصی مورد استفاده قرار می گیرد) تبدیل می شود. در حال حاضر این پروب صرفاً برای تولیدکنندگان بتن پیش ساخته بازاریابی می شود (به خاطر انواع میکسر به کار رفته در این صنعت در برابر میکسرهای درام در بتن آمده استفاده می شود). اگر چه براساس اطلاعات نویسنده تعداد محدودی از این پروب ها در کارخانه های پیش ساخته در آمریکای شمالی نصب شده اند. اما هنوز توسعه تجهیزات نیازمند توسعه بیشتر تکنولوژی SCC می باشد.

 

سایر ملاحظات

 

مخلوط ها با ویسکوزیته بسیار بالا به زمان ترکیب طولانی تری نیاز دارند و می توانند یک تنش نسبتاً بالاتری را بر روی میکسر اعمال کنند. ACI 304 عنوان می کند که میکسر باید برای شروع و خاتمه تحت شرایط بار کامل طراحی شود و اکثر میکسرها می توانند این کار را انجام دهند. با این وجود یک گزارش عنوان نموده که ترکیباتی با wv/pv بسیار پایین باعث لغزش دستگاه های سنگ شکن در طول تولید شده و میکسرها را از کار می اندازد. در این صورت کاهش اندازه بچینگ باعث کاهش مصرف برق میکسر می شود.

ترکیب سریع تر باعث ایجاد مخلوط بهتر و یا زمان ترکیب کوتاه تر نمی شود. مثالی از این مورد در حوزه بتن با عملکرد بالا (HPC) ارائه شده است. بتن با عملکرد بالا در عرشه های پل در ایالات متحده استفاده می شود و اغلب با استفاده از فوم سیلیکا و یک نسبت W/C پایین نسبت بندی می شود. برای این سیستم ها، بتن در کامیون های میکسر به محل پروژه منتقل می شود. این ترکیبات می توانند کاملاً ویسکوز باشند و در طول ترکیب، ممکن است به دیواره های میکسر درام بچسبند. در یک دستورالعمل مربوط به HPC که توسط FHA منتشر گردیده است توصیه می شود که برای HPC ترکیبی کامیون، سرعت ترکیب درام کاهش یابد (به خاطر ماهیت چسبندگی مخلوط) و اندازه بچینگ تا 70 درصد ظرفیت کاهش یافته تا کارایی مخلوط افزایش پیدا کند. سرعت پایین تر ترکیب، امکان ایجاد جریان آرام ویسکوزیتی مخلوط و کارایی بهتر ترکیب را فراهم می سازد و دیگر مخلوط به راحتی به دیواره درام 

نمی چسبد و همین روش می تواند برای مخلوط با ویکوزیته بالا در مقابل مخلوط با ویسکوزیته پایین به کار رود.

انتقال مواد از آزمایشگاه های کنترل شده و کوچک برای تولید SCC با استفاده از تجهیزات صنعتی یک مرحله مهم در توسعه هر برنامه SCC است. فرآیند انتقال کامل باید همه چیز را مدنظر قرار دهد، از جمله ذخیره سازی و نگهداری مواد، تجهیزات بچینگ، دقت و صحت تجهیزات ترکیب و در نهایت برای پروتکل در زمینه خارج شدن بچینگ ها، ارائه یک دستورالعمل گام به گام برای ترکیب نمودن هر نوع SCC جهت استفاده در انواع ذخیره سازی، بچینگ و تجهیزات ترکیب امکان پذیر نمی باشد.

متخصص باید در صدد درک علت کاربرد تجهیزات و امکانات خویش باشد و اینکه چگونه یک مخلوط SCC خاص ممکن است در طول فرآیند واکنش نشان دهد. هدف یک انتقال کنترل شده دقیق، در نهایت، توانایی جهت تولید SCC خوب و پایدار با مداخله کمتر نیروی انسانی در طول فرآیند و یا بعد از آن در حوزه رفع عیوب می باشد. بچینگ مستمر و فرآیند ترکیب یک مولفه کلیدی برای تولید SCC با کیفیت است. خطاها و انحراف های حاصل از این فرآیند باید ثبت شده و هنگام عیب یابی عملکرد ترکیب مبادله شود. یک فرآیند باید ارتباطی صریح و روشن به عنوان بخشی از برنامه کنترل کیفیت ارائه نماید.

 

جهت اطلاعات بیشتر در زمینه تولید و فروش بتن و محصولات مرتبط و همچنین اطلاع از قیمت روز بتن می توانید با شرکت مهندسین مشاور مهرازان پایدار با نام نشان تجاری ثبت شده کلینیک بتن ایران با شماره 02145872 واحد مهندسی تماس حاصل نموده و یا جهت اطلاعات بیشتر در این زمینه به وب سایت رسمی شرکت WWW.CLINICBETON.IRمراجعه فرمایید.

  • مسعود اسماعیلی